Switch to the store?

Machine Learning for OpenCV

More Information
Learn
  • Explore and make effective use of OpenCV's Machine Learning module
  • Learn deep learning for computer vision with Python
  • Master linear regression and regularization techniques
  • Classify objects such as flower species, handwritten digits, and pedestrians
  • Explore the effective use of support vector machines, boosted decision trees, and random forests
  • Get acquainted with neural networks and Deep Learning to address real-world problems
  • Discover hidden structures in your data using k-means clustering
  • Get to grips with data pre-processing and feature engineering
About

Machine Learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of Machine Learning, with Deep Learning driving innovative systems such as self-driving cars and Google’s DeepMind.

OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and Machine Learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for.

Machine Learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your Machine Learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning.

By the end of this book, you will be ready to take on your own Machine Learning problems, either by building on the existing source code or developing your own algorithm from scratch!

Features
  • Load, store, edit, and visualize data using OpenCV and Python
  • Grasp the fundamental concepts of classification, regression, and clustering
  • Understand, perform, and experiment with Machine Learning techniques using this easy-to-follow guide
  • Evaluate, compare, and choose the right algorithm for any task
Page Count 382
Course Length 11 hours 27 minutes
ISBN 9781783980284
Date Of Publication 13 Jul 2017

Authors

Michael Beyeler

Michael Beyeler is a Postdoctoral Fellow at the University of Washington in Seattle. His work lies at the intersection of neuroscience, computer vision, and machine learning. Michael is the author of two Packt books: OpenCV with Python Blueprints (2015) and Machine Learning for OpenCV (2017). He is an active contributor to several open-source software projects and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. His technical blog can be found at www.askaswiss.com.