Machine Learning for Finance

More Information
Learn
  • Apply machine learning to structured data, natural language, photographs, and written text
  • Understand how machine learning can help you detect fraud, forecast financial trends, analyze customer sentiments, and more
  • Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow
  • Delve into neural networks, and examine the uses of GANs and reinforcement learning
  • Debug machine learning applications and prepare them for launch
  • Address bias and privacy concerns in machine learning
About

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself.

The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways.

The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.

Features
  • Explore advances in machine learning and how to put them to work in financial industries
  • Gain expert insights into how machine learning works, with an emphasis on financial applications
  • Discover advanced machine learning approaches, including neural networks, GANs, and reinforcement learning
Page Count 456
Course Length 13 hours 40 minutes
ISBN 9781789136364
Date Of Publication 30 May 2019

Authors

Jannes Klaas

Jannes Klaas is a quantitative researcher with a background in economics and finance. He taught machine learning for finance as lead developer for machine learning at the Turing Society, Rotterdam. He has led machine learning bootcamps and worked with financial companies on data-driven applications and trading strategies. Jannes is currently a graduate student at Oxford University with active research interests including systemic risk and large-scale automated knowledge discovery.