Machine Learning Algorithms

More Information
Learn
  • Acquaint yourself with important elements of Machine Learning
  • Understand the feature selection and feature engineering process
  • Assess performance and error trade-offs for Linear Regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector machines
  • Implement clusters to a dataset
  • Explore the concept of Natural Processing Language and Recommendation Systems
  • Create a ML architecture from scratch.
About

As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.

In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.

On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.

Features
  • Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
  • Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
  • Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.
Page Count 360
Course Length 10 hours 48 minutes
ISBN 9781785889622
Date Of Publication 23 Jul 2017

Authors

Giuseppe Bonaccorso

Giuseppe Bonaccorso is an experienced manager in the fields of AI, data science, and machine learning. He has been involved in solution design, management, and delivery in different business contexts. He got his M.Sc.Eng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata, Italy, and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, neuroscience, and natural language processing.