More Information
  • Obtain and analyze raw data from various sources including text files, CSV files, databases, and websites
  • Implement practical tree and graph algorithms on various datasets
  • Apply statistical methods such as moving average and linear regression to understand patterns
  • Fiddle with parallel and concurrent code to speed up and simplify time-consuming algorithms
  • Find clusters in data using some of the most popular machine learning algorithms
  • Manage results by visualizing or exporting data

This book will take you on a voyage through all the steps involved in data analysis. It provides synergy between Haskell and data modeling, consisting of carefully chosen examples featuring some of the most popular machine learning techniques.

You will begin with how to obtain and clean data from various sources. You will then learn how to use various data structures such as trees and graphs. The meat of data analysis occurs in the topics involving statistical techniques, parallelism, concurrency, and machine learning algorithms, along with various examples of visualizing and exporting results. By the end of the book, you will be empowered with techniques to maximize your potential when using Haskell for data analysis.

  • A practical and concise guide to using Haskell when getting to grips with data analysis
  • Recipes for every stage of data analysis, from collection to visualization
  • In-depth examples demonstrating various tools, solutions and techniques
Page Count 334
Course Length 10 hours 1 minutes
ISBN 9781783286331
Date Of Publication 24 Jun 2014


Nishant Shukla

Nishant Shukla is a computer scientist with a passion for mathematics. Throughout the years, he has worked for a handful of start-ups and large corporations including WillowTree Apps, Microsoft, Facebook, and Foursquare.

Stepping into the world of Haskell was his excuse for better understanding Category Theory at first, but eventually, he found himself immersed in the language. His semester-long introductory Haskell course in the engineering school at the University of Virginia ( has been accessed by individuals from over 154 countries around the world, gathering over 45,000 unique visitors.

Besides Haskell, he is a proponent of decentralized Internet and open source software. His academic research in the fields of Machine Learning, Neural Networks, and Computer Vision aim to supply a fundamental contribution to the world of computing.