Switch to the store?

Hands-On Neural Networks with Keras

More Information
Learn
  • Understand the fundamental nature and workflow of predictive data modeling
  • Explore how different types of visual and linguistic signals are processed by neural networks
  • Dive into the mathematical and statistical ideas behind how networks learn from data
  • Design and implement various neural networks such as CNNs, LSTMs, and GANs
  • Use different architectures to tackle cognitive tasks and embed intelligence in systems
  • Learn how to generate synthetic data and use augmentation strategies to improve your models
  • Stay on top of the latest academic and commercial developments in the field of AI
About

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning.

Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks.

By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.

Features
  • Design and create neural network architectures on different domains using Keras
  • Integrate neural network models in your applications using this highly practical guide
  • Get ready for the future of neural networks through transfer learning and predicting multi network models
Page Count 462
Course Length 13 hours 51 minutes
ISBN9781789536089
Date Of Publication 30 Mar 2019
From the biological to the artificial neuron – the perceptron
Building a perceptron
Learning through errors
Training a perceptron
Backpropagation
Scaling the perceptron
A single layered network
Summary