Switch to the store?

Hands-On Markov Models with Python

More Information
Learn
  • Explore a balance of both theoretical and practical aspects of HMM
  • Implement HMMs using different datasets in Python using different packages
  • Understand multiple inference algorithms and how to select the right algorithm to resolve your problems
  • Develop a Bayesian approach to inference in HMMs
  • Implement HMMs in finance, natural language processing (NLP), and image processing
  • Determine the most likely sequence of hidden states in an HMM using the Viterbi algorithm
About

Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.

Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs.

In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.

By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.

Features
  • Build a variety of Hidden Markov Models (HMM)
  • Create and apply models to any sequence of data to analyze, predict, and extract valuable insights
  • Use natural language processing (NLP) techniques and 2D-HMM model for image segmentation
Page Count 178
Course Length 5 hours 20 minutes
ISBN 9781788625449
Date Of Publication 26 Sep 2018

Authors

Abinash Panda

Abinash Panda has been a data scientist for more than 4 years. He has worked at multiple early-stage start-ups and helped them build their data analytics pipelines. He loves to munge, plot, and analyze data. He has been a speaker at Python conferences. These days, he is busy co-founding a start-up. He has contributed to books on probabilistic graphical models by Packt Publishing.

AnkurAnkan

AnkurAnkan is a BTech graduate from IIT (BHU), Varanasi. He is currently working in the field of data science. He is an open source enthusiast and his major work includes starting pgmpy with four other members. In his free time, he likes to participate in Kaggle competitions.