Hands-On Deep Learning Architectures with Python

More Information
Learn
  • Implement CNNs, RNNs, and other commonly used architectures with Python
  • Explore architectures such as VGGNet, AlexNet, and GoogLeNet
  • Build deep learning architectures for AI applications such as face and image recognition, fraud detection, and many more
  • Understand the architectures and applications of Boltzmann machines and autoencoders with concrete examples
  • Master artificial intelligence and neural network concepts and apply them to your architecture
  • Understand deep learning architectures for mobile and embedded systems
About

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems.

Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and moreā€”all with practical implementations.

By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.

Features
  • Explore advanced deep learning architectures using various datasets and frameworks
  • Implement deep architectures for neural network models such as CNN, RNN, GAN, and many more
  • Discover design patterns and different challenges for various deep learning architectures
Page Count 316
Course Length 9 hours 28 minutes
ISBN 9781788998086
Date Of Publication 30 Apr 2019