Switch to the store?

Getting Started with Neural Nets in R [Video]

More Information

In this course we will:

  • Dive into building Neural Nets from Scratch
  • Set up R packages for neural networks and deep learning 
  • Understand the core concepts of artificial neural networks
  • Work with neurons, perceptron, bias, weights, and activation functions
  • Implement supervised and unsupervised machine learning in R for neural networks
  • Predict and classify data automatically using neural networks
  • Evaluate and fine-tune the models you build.

Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve a wide range of problems in different areas of AI and machine learning.

This course explains the niche aspects of neural networking and provides you with a foundation from which to get started with advanced topics by implementing them in R. This course covers an introduction to neural nets, the R language, and building neural nets from scratch- with R packages; specific worked models are applied to practical problems such as image recognition, pattern recognition, and recommender systems. At the end of the course, you will learn to implement neural network models in your applications with the help of practical examples from companies using neural nets.

All the code and supporting files for this course are available on Github at: https://github.com/PacktPublishing/Getting-Started-with-Neural-Nets-in-R

Style and Approach

The course is a step-by-step guide to understanding Neural Networks with R; throughout the course, practical, real-world examples help you get acquainted with the various concepts of Neural Networks.

  • Develop a strong background in neural networks with R, to implement them in your applications
  • Learn how to build and train neural network models to solve complex problems 
  • Implement solutions from scratch, covering real-world case studies to illustrate the power of neural network models
Course Length 2 hours 25 minutes
Date Of Publication 3 Jul 2018


Arun Krishnaswamy

Arun Krishnaswamy has over 18 years of experience with large datasets, statistical methods, machine learning and software systems. He is one of the First Hadoop Engineers in the world, Advisor to AI Startups. He has 15+ years’ experience using R. He is also a Ph.D. in Statistics/Math with MS in CS. Expertise in Machine Learning, Neural Nets, Deep Learning. Deep Experience in AWS, Spark, Cassandra, MongoDB, SQL, NoSQL, Tableau, R, Visualization. Data Science Mentor at UC Berkeley, Stanford, Caltech.Guest Lecturer at Community Colleges. Data Science in different domains o Fintech (Lending Club), o Cybersecurity (VISA) o Advertising Technology (Yahoo / Microsoft) o Bot Technology (voicy.ai) o Retail (WRS) o IOT (GE) o ERP (SAP) o Health Care (Blue Cross).