Applied Deep Learning with Python

More Information
Learn
  • Discover how you can assemble and clean your very own datasets
  • Develop a customized machine learning classification strategy
  • Build, train and enhance your own models to solve unique problems
  • Work with production-ready frameworks such as TensorFlow and Keras
  • Understand how neural networks operate in clear and simple terms
  • Deploy your predictions to the web
About

Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before you train your first predictive model. You’ll then explore a variety of approaches to classification such as support vector networks, random decision forests and k-nearest neighbors to build on your knowledge before moving on to advanced topics.

After covering classification, you’ll go on to discover ethical web scraping and interactive visualizations, which will help you professionally gather and present your analysis. Next, you’ll start building your keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. You’ll then be guided through a trained neural network, which will help you explore common deep learning network architectures (convolutional, recurrent, and generative adversarial networks) and deep reinforcement learning. Later, you’ll delve into model optimization and evaluation. You’ll do all this while working on a production-ready web application that combines TensorFlow and Keras to produce meaningful user-friendly results.

By the end of this book, you’ll be equipped with the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.

Features
  • Designed to iteratively develop the skills of Python users who don’t have a data science background
  • Covers the key foundational concepts you’ll need to know when building deep learning systems
  • Complete with step-by-step exercises and activities to help you build the skills you need for the real world
Page Count 334
Course Length 10 hours 1 minute
ISBN 9781789804744
Date Of Publication 31 Aug 2018

Authors

Luis Capelo

Luis Capelo is a Harvard-trained analyst and a programmer, who specializes in designing and developing data science products. He is based in New York City, America. Luis is the head of the Data Products team at Forbes, where they investigate new techniques for optimizing article performance and create clever bots that help them distribute their content. He worked for the United Nations as part of the Humanitarian Data Exchange team (founders of the Center for Humanitarian Data). Later on, he led a team of scientists at the Flowminder Foundation, developing models for assisting the humanitarian community. Luis is a native of Havana, Cuba, and the founder and owner of a small consultancy firm dedicated to supporting the nascent Cuban private sector.

Alex Galea

Alex Galea has been professionally practicing data analytics since graduating with a Master’s degree in Physics from the University of Guelph, Canada. He developed a keen interest in Python while researching quantum gases as part of his graduate studies. Alex is currently doing web data analytics, where Python continues to play a key role in his work. He is a frequent blogger about data-centric projects that involve Python and Jupyter Notebooks.