Mastering OpenCV 4 - Third Edition

More Information
Learn
  • Build real-world computer vision problems with working OpenCV code samples
  • Uncover best practices in engineering and maintaining OpenCV projects
  • Explore algorithmic design approaches for complex computer vision tasks
  • Work with OpenCV’s most updated API (v4.0.0) through projects
  • Understand 3D scene reconstruction and Structure from Motion (SfM)
  • Study camera calibration and overlay AR using the ArUco Module
About

Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks.

You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects.

By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4.

Features
  • Learn about the new features that help unlock the full potential of OpenCV 4
  • Build face detection applications with a cascade classifier using face landmarks
  • Create an optical character recognition (OCR) model using deep learning and convolutional neural networks
Page Count 280
Course Length 8 hours 24 minutes
ISBN 9781789533576
Date Of Publication 27 Dec 2018

Authors

Roy Shilkrot

Roy Shilkrot is an assistant professor of computer science at Stony Brook University, where he leads the Human Interaction group. Dr. Shilkrot's research is in computer vision, human-computer interfaces, and the cross-over between these two domains, funded by US federal, New York State, and industry grants. Dr. Shilkrot graduated from the Massachusetts Institute of Technology (MIT) with a PhD, and has authored more than 25 peer-reviewed papers published at premier computer science conferences, such as CHI and SIGGRAPH, as well as in leading academic journals such as ACM Transaction on Graphics (TOG) and ACM Transactions on Computer-Human Interaction (ToCHI).

David Millán Escrivá

David Millán Escrivá was 8 years old when he wrote his first program on an 8086 PC in Basic, which enabled the 2D plotting of basic equations. In 2005, he finished his studies in IT with honors, through the Universitat Politécnica de Valencia, in human-computer interaction supported by computer vision with OpenCV (v0.96). He has worked with Blender, an open source, 3D software project, and on its first commercial movie, Plumiferos, as a computer graphics software developer. David has more than 10 years' experience in IT, with experience in computer vision, computer graphics, pattern recognition, and machine learning, working on different projects, and at different start-ups, and companies. He currently works as a researcher in computer vision.