
11
Replicating your Data

With our application live for the world to see, we need to know the proper steps
to scale it to meet demand.

In this chapter we're going to:

 � Learn about CouchDB's powerful master-master replication

 � Play with replication locally and dig into how it works

 � Handle conflicts that can occur as a result of replication

 � Use replication to push your local databases to Cloudant

 � Play with continuous replication

 � Save room in our database by compacting data

 � Talk about the next steps that you can take with your application

We played with replication in Chapter 10, Deploying your Application, but we didn't
completely look into the inner workings to see what it is and what it actually does.
Let's get right into it!

What is replication?
Basic replication, as it relates to the IT world, can be defined as the process of sharing
information so as to ensure consistency between redundant resources. So, if we were to
define replication as it relates to CouchDB, we would have the ability to synchronize two
copies of the same database using master-master replication. You may have heard of the
more common master-slave database architecture that most databases use, but CouchDB
uses a very powerful master-master replication model. Before we go any further, let's dive
deeper into what master-slave and master-master mean, and how their architectures differ.

Replicating your Data

[2]

Master-slave replication
Master-slave is the most common database architecture when there is more than one
database server. In a master-slave relationship, there is one database that, as you will have
guessed, serves as the master, and the rest of the databases act as its slave. Here's what it
would look like:

 � An application would connect to the master and update data

 � The data would then ripple through the slaves until all of the data is consistent
across the servers

In the simplest implementation, this setup allows you to write to the master server, and
when you are doing queries or reads, you can connect to the slave. This practice helps you
reduce the burden and number of connections to any one server.

This all sounds great in theory. However, in practice, there is still a bit of a bottleneck here.
If the master server goes down for whatever reason, the data will still be available via the
slave, but new writes won't be possible. There are ways around this, but that's out of the
scope of this discussion. I'm not arguing that this approach is bad (because it's not); I'm just
defining some basic terms here.

Now that you understand the basics of master-slave replication, let's talk about master-
master replication and how CouchDB uses it.

Master-master replication
Master-master replication is unique in the fact that there is no residing master database;
each database server can act as the master at the same time as other servers are being
treated as masters. At some point in time, all of the masters sync up to make sure that they
all have correct and up-to-date data. Here's what master-master replication allows:

 � If one master fails, the other database servers can operate normally and pick up the
slack. When the database server is back online, it will catch up using replication.

 � Masters can be located in several physical sites and can be distributed across
the network.

This sounds like the perfect scenario, right? Well, it kind of is. But, there is still the possibility of
running into data conflicts and all kinds of other issues. If you've ever tried master-master or
multi-master replication in relational databases, then you can breathe a sigh of relief, because
it's much easier in CouchDB, as it was built from the ground up with replication in mind.

Chapter 11

[3]

Remember the revision field that we saw in every document called _rev? This _rev field keeps
track of the current revision of a document. If two databases are trying to sync documents,
the _rev field will be compared. If the _rev values are not identical, then the out of date one
will update its revision to match by comparing revision history. You might be wondering, what
happens when conflicts happen, like one document has two different pieces of data?". I'll
answer that question shortly, but let's start by getting our feet wet with replication.

Playing with replication
Replication is flexible in that it can work with multiple databases on the same or different
servers. This flexibility will make it easy for us to test and get comfortable before we do
anything with our production database.

Time for action – replicating verge to another local database
One of the nice things about replication is that we can test and play with it anywhere.
So, let's create another database on our local machine, and replicate the entire verge
database there.

1. Open the command-line.

2. Let's create a new database called verge-replica by running the following
command in Terminal, and replacing the username and password with your
administrator's username and password:

curl -X PUT username:password@localhost:5984/verge-replica

3. Terminal will respond with the following message:

{"ok":true}

4. Now that the verge-replica database has been created, let's replicate all of the
data from verge to verge-replica using a simple curl statement that talks to
CouchDB's _replicate function:

curl –X POST –H "Content-Type:application/json" –d '{"source":
"verge", "target":"verge-replica"}' http://localhost:5984/_
replicate

Replicating your Data

[4]

5. Terminal will respond with a nice long status message telling you that everything
turned out okay.

{"session_id":"51e4f994c97874cfd70d46c9eafee865","start_
time":"Sat, 24 Dec 2011 05:56:33 GMT","end_time":"Sat, 24 Dec 2011
05:56:33 GMT","start_last_seq":0,"end_last_seq":102,"recorded_
seq":102,"missing_checked":0,"missing_found":102,"docs_
read":102,"docs_written":102,"doc_write_failures":5}

What just happened?
We just used Terminal to create a database called verge-replica to which we intend
to push data from verge. We then used a simple (but long) POST curl statement to
CouchDB's _replicate function. We included the source database, which is where we
want the data to come from, and the target, which is the database that we want to push the
changes to. After the replication has run, the results will be returned to you. Let's go through
each of the keys in the response to see exactly what's happening here:

 � session_id is the unique identifier of the replication process.

 � start_time is the time when the replication began.

 � end_time is the time when the replication ended. You can see that this value is
very close to start_time, because we were running all this locally, and we didn't
replicate all that many documents.

 � start_last_seq is the time where we are starting out from. Since this is our first
replicating time, its value will be zero.

 � end_last_seq is the time where the sequence ended up at the end of replication.

 � recorded_seq is the sequence that is recorded on the target database at the end
of replication.

 � missing_checked is the number of documents that already exist on the target,
therefore they won't need to be copied. Since this is our first time replication, its
value will be zero.

 � missing_found is the number of documents that need to be replicated to the
target. Again, since we've never replicated to this database, this will be the total
number of documents in the source.

 � docs_read is the number of documents read from the source database, which is
the verge database in this instance.

Chapter 11

[5]

 � docs_written is the number of documents written to the target database, which
is the verge-replica database in this instance.

 � doc_write_failures is the number of failures that occurred. Failures can occur
due to server timeouts or a validate_doc_update function rejecting the write of
a document. If all went well, this value should be equal to zero.

It's pretty amazing to see that we just have to run one simple command, and all of the data
in verge can be copied over to verge-replica. Just to make sure that verge-replica is
intact, let's open Futon and double check the data.

1. Go to Futon by opening your browser to http://localhost:5984/_utils.

2. You'll notice that the Size and Number of Documents in the verge database is equal
to the Size and Number of Documents in the verge-replica databases. That's
enough proof for us to confidently say that all the documents replicated cleanly
between verge and verge-replica. But, let's dig deeper and edit a document.

3. Click on verge-replica in the database list.

4. Pick any post to edit, but you'll need to remember which one it was. So, it's probably
easiest to click the first one.

Replicating your Data

[6]

5. This is the post that I'm going to edit.

6. Change the content from Is this thing on? to What's the deal with airplane food?.

7. Click on Save Document.

Chapter 11

[7]

Let's see replication in action by replicating the updated data from verge-replica back
to verge.

Time for action – using Futon to replicate again
Typing the replication statement through the command-line is definitely the most universal
way to communicate with CouchDB, but it can become pretty irritating if you miss quotation
marks or forget the tricky syntax. Luckily, Futon has our back with a nice and simple
Replicator interface. Let's replicate our data again. But, this time, let's switch things up and
replicate our newly updated data from verge-replica to verge, and use Futon to speed
things up along the way.

1. Go to Futon by opening your browser to http://localhost:5984/_utils.

2. If you're not already logged in, make sure to click on Login at the bottom of the page
and enter your administrator's credentials.

3. Click on Replicator in the side bar. You will be presented with a form that will
allow you to tell CouchDB which database you would like to replicate from
(the source database), and the database you would like to replicate the
changes to (the target database).

Replicating your Data

[8]

4. Remembering that replication can go both ways, lets replicate our data from
verge-replica, by putting it in the from the database back to verge by putting it
into the to database.

5. When you're ready, click on Replicate, and CouchDB will replicate our verge-
replica database back to the verge database.

6. You'll see a replication result that is pretty similar to what you saw from the
command-line earlier.

Chapter 11

[9]

What just happened?
We just replicated back and forth between two databases. This is known as bi-lateral
replication. Bi-lateral replication means that we can replicate back and forth between
databases without having to name a database as the master; we simply want to maintain the
data across all of the servers.

To look a bit deeper into what happened, look closely at the fields in the replication
results in the previous image. Do you notice anything different? CouchDB determined
that there was a document missing in verge that was present in verge-replica, and
outputted the field missing_found with a value of 1. Likewise, a new document was
created in verge with the data from verge-replica; it saved successfully. So, it outputted
the field docs_written with a value of 1. The writing of the new document was successful
without any problems, so doc_write_failures is still set to 0.

As your application and database grow, you may have a variety of database servers. You can
ensure that with bi-lateral replication, you can write to a server and the data will eventually
be consistent across all of the other servers.

Managing conflicts
The concept of bi-lateral replication brings up an important issue: what happens when
two documents are changed on two separate database servers? We try to replicate these
databases against each other. This occurrence is called a conflict.

Conflicts, while annoying, are a part of most distributed systems. For instance, in this book,
we've been using Git to manage our source control. We are the only developer accessing
the source code. But, if you had a whole team of people working on this project, then you'd
run into a case where two developers will eventually change the same line of code. In this
example, the developer who is trying to merge the database against the other database will
have to say "mine is the correct one", or "yours is the correct one", or "pieces of yours are
right and pieces of mine or right".

This same exact exchange and workflow is something that we'll experience inside of
CouchDB.

Let's go through it step-by-step in our real database to show you how you might resolve
these conflicts.

Replicating your Data

[10]

Time for action – creating and fixing a conflict
Creating a conflict is pretty easy for you to simulate between two databases. So let's do
that now.

1. Let's go into the verge database first, and open the document that we've been
playing with.

2. The data in this document is equal on both the database servers. So, let's change the
value of the content field to something different; I made mine What's the deal
with airplane peanuts?. Click on Save Document when you're done.

Chapter 11

[11]

3. Notice that the _rev field has been updated.

4. Now, let's go to the verge-replica database and find the same document.

5. Let's change the value of the content field to something different to what we
entered on verge. I made mine Is it a pea? Or a nut?. Click on Save Document
when you're done.

Replicating your Data

[12]

6. What we have now is one document with conflicting data. You'll notice that the _rev
fields do not match, which is what the replicator will pick up on in just a moment.

7. All right, let's cause some chaos. Click on Replicator in the side bar.

8. In the Replicator screen, put verge in the from database and verge-replica in
the to database. Cross your fingers and click on Replicate.

Chapter 11

[13]

9. It looks like everything went off without a hitch again. But we know better than
that—we know that a conflict occurred. But, if we were to look at both of our
documents, you'll see that their values are the same.

10. CouchDB assumed that the data in the source database was the "actual" data to
save, and it overwrote the target database. In order to see what actually happened,
we need to create a temporary view to list out all of the documents that have some
type of conflict.

11. Go back to the database overview, click on the view drop-down, and select the
Temporary view... option.

Replicating your Data

[14]

12. Type the following code into the Map function text area, and click on Run.

function(doc) {
 if(doc._conflicts) {
 emit(doc._conflicts, null);
 }
}

13. You'll see that the ID of the document that we've been playing with is listed.

What just happened?
We just simulated the occurrence of a conflict between two databases in CouchDB.
Essentially, we changed the content of a document on two different databases and replicated
them together. The source database document essentially overwrote the value of the target
database's document content during replication.

We could just consider this fine, but what if the conflict deleted the data that was
mission-critical for you?

Chapter 11

[15]

In order to solve this problem, we created a temporary view to show us a list of all of the
documents that were conflicting. From there, if you decided that you wanted to build a
conflict system, then you could turn this into an actual view, and poll it with a background
process to look for conflicts. You could then develop business rules around it and fix the
conflicts programmatically, or alert one of your technical staff to fix it manually. To fix a
conflict, you need to delete the old revisions of the document, and update the document
with the value that you actually want to use.

This is an issue that you may encounter, but if you do, please check out the Github repository
that I'll tell you about at the end of this chapter. I'll be sure to add a working example of this
for you to play with.

Continuous replication
Doing one-off replication between two databases is great, but chances are that for most
data, you'll need to do the replication on a continual basis. We'll call this continuous
replication. Luckily, for us to do continuous replication, we just need to pass an additional
parameter to the replicate function. I'll not only show you how to perform continuous
replication through Futon, but I'll also give you the command-line statement at the end, if
you want to try that as well.

Time for action – setting up continuous replication using Futon
Let's set up continuous replication from our verge database to verge-replica using
Futon. I think you'll enjoy that as all we really need to do is click on a checkbox, and CouchDB
will take it from there!

1. Open up Futon and click on Replicator, or navigate directly to
http://localhost:5984/_utils/replicator.html.

2. Select verge as the from (source) database and select verge-replica as the to
(target) database

3. The only thing that is different is that we'll want to click the Continuous checkbox.

Replicating your Data

[16]

4. Click on Replicate.

Futon will show you a different kind of response than you've seen before, but it says
that everything went okay.

5. Let's check to make sure the replication has started by clicking on Status in the sidebar.

Chapter 11

[17]

What just happened?
We just used the familiar Futon console that we've used before to perform one-off replication,
but this time we clicked on the Continuous checkbox. By checking this checkbox, we are
telling CouchDB that we want it to continually poll for changes from the source database and
the target database. When any changes are found, we want to replicate those documents
from the source database to the target database. This replication runs as a separate process,
so we can check our Status panel to see the PID (process ID) and the Status of the replication
running in the background.

Since we might not always have access to Futon to perform this action, we can also just add
"continuous":"true" to the same curl statement we used before in Terminal as follows:

curl -X POST http://localhost:5984/_replicate -d '{"source":"db",
"target":"db-replica", "continuous":true}' -H "Content-Type: application/
json"

It's worth noting that, in this example, we are only replicating from one database to
another. But, if any changes occur in the verge-replica database, then we aren't
currently replicating them back to verge. If we really want to have bi-directional continuous
replication, we totally could. Going even further, if this cluster grew, we could replicate to
multiple servers just as easily. Designing a solid and scalable replication system is a bit out of
the realm of this book. But, with some research and experimenting, it shouldn't be too hard
to come up with a solid solution.

Now that we have continuous replication set up, let's go through and test to make sure that
the content is being pushed to the verge-replica database when we create new content,
since our application is solely accessing the verge database. We could do this in a number
of ways, but the easiest way is to actually create a new post through our application that is
connected to the verge database.

1. Open your browser to http://localhost/verge/, and log in as one of
your users.

2. Click on My Profile and create a new post.

3. Now, let's check to see if our changes have been replicated from verge to verge-
replica. Go to http://localhost:5984/_utils.

The easiest way to check that our data has replicated is to simply look at the number of
documents in each database. If they are the same, then they are synched up.

You could dig deeper and find the newly created document in both databases, but it's
overkill for us to do all of that. We can trust that CouchDB will do its job in replicating the
data. Now that you've learned the ropes, let's make sure that we remember how to replicate
the data from our local verge database to our production database on Cloudant.

Replicating your Data

[18]

Replicating the local data to production
This section has a bit of overlap with Chapter 10, but it's important for you to understand,
So I'll go over it quickly again. Let's replicate both the _users and verge databases, so that
all of our local data is available on the production server. Believe it or not, replicating data to
another server is no different than what we have been toying around with locally.

Just so that we get some variety, let's replicate the _users database through Futon, and the
verge database through Terminal.

Once we've done this, our application will be operational with all of the testing data that you've
created locally. You don't have to worry if your application has been live for a few minutes or
even a few days; the best part of replication is that if someone is already using your application,
then all of their data will remain intact, and we'll just be adding our local data.

Time for action – replicating our local _users database to
Cloudant

Let's replicate our local _users database to the _users database we've created on
Cloudant.

1. Open Futon in the browser and click on Replicator, or you can navigate directly to
http://localhost:5984/_utils/replicator.html.

2. Make sure that you are signed in as the administrator; if you are not, click on
Login and sign in as an administrator.

3. Select the _users database in the Replicate changes from dropdown.

4. Click on the Remote database radio button in the to section.

Chapter 11

[19]

4. In the Remote database text field, enter the URL of the database at
Cloudant along with the credentials. The format of the URL will look similar
to https://username:password@username.cloudant.com/_users.

Replicating your Data

[20]

5. Click on Replicate, and CouchDB will push your local database to Cloudant.

You'll see the familiar results from Futon.

What just happened?
We just used Futon to replicate our local _users database to our _users production
database hosted with Cloudant. The process was exactly the same as we've done before,
however, we used Remote Database in the to section, and used the URL of the database
along with our credentials. When the replication was complete, we received a familiar report
saying that everything went okay. It looks like everything went off well without a hitch. Let's
move on to replicating our verge database as well.

It's worth mentioning that if you attempted to replicate the users
database from the command-line, then you would have to include the
username and password in your call. This is because we have the users
database completely locked to anonymous users. The function would look
something similar to the following:

curl -X POST http://user:password@localhost:5984/_replicate -d
'{"source":"_users", "target":"https://timjuravich:wookie@timjuravich.
cloudant.com/_users"}' -H "Content-Type: application/json"

Chapter 11

[21]

Have a go hero – replicating the local verge database to Cloudant
As we've seen before, it's easy to replicate databases from the command-line. Do you think
you can figure out the command to replicate your local verge database to the verge
database on Cloudant? It's almost impossible to mess anything up at this stage in the game,
so don't be scared to try a few things if you don't get it the first time.

Give it a shot. When you're done, flip to the next page, and we'll go over the command that I
used.

How did everything go? Hopefully, you got it without too much effort. If you couldn't get it to
work, here's an example of a command that you could have run:

curl -X POST localhost:5984/_replicate -d '{"source":"verge",
"target":"https://timjuravich:wookie@timjuravich.cloudant.com/verge"}' -H
"Content-Type: application/json"

In this example, we're using our local CouchDB instance to replicate our local verge
database to the target Cloudant verge database. For the local database, we can simply put
the name as verge, but for the target database, we had to pass the full database location.

With all of our data live and on our production server, you can log in as any of the users that
you created locally, and see all of our content is live and ready for the world to see. But, it's
not quite the end of our journey yet; as our application grows we will need to know about
some of the maintenance that we can perform on CouchDB, and how we might easily scale
using PHPFog and Cloudant.

Compacting databases
As we've seen a few times in this book, CouchDB's revision system is a powerful thing. But,
with CouchDB keeping track of each revision on a document, there will be a lot of data
overhead that you might no longer need. With that in mind, CouchDB has a nice and simple
compaction function that allows you to easily compact a database.

Compaction compresses your database by removing the document revision history, which
is created during updates. Deleted documents and old revisions of documents will also be
removed from memory.

Let's compact our local database, so that we're familiar with how to do this in the real world
if we ever need to.

Replicating your Data

[22]

Time for action – compacting our local verge database
Compaction is a manually triggered process, which, as you may have guessed, can be
triggered through CouchDB's RESTful JSON API.

1. Open Terminal.

2. Trigger compaction on our local server by running the following command,
and replacing the username and password with the credentials of your
database admin account.

curl -H "Content-Type: application/json" -X POST http://
username:password@localhost:5984/verge/_compact

3. If all goes well, you'll be returned the simple and always satisfying response that
everything went okay.

{"ok":true}

What just happened?
We just used curl to trigger a POST call to the verge database _compact function. Once
we called the _compact function, we were returned {"ok":true}, so we know that
compaction completed successfully. Behind the scenes, CouchDB removed all of the revision
history for each document.

Testing compaction is as easy as you might expect. We just need to look at the size of the
database in Futon.

1. Open your browser and go to http://localhost:5984/_utils.

2. Compare verge against verge-replica, and you'll notice right away that
compaction just cut the size of our database in half!

Chapter 11

[23]

You can compact your database as many times as you like without any side effects. But,
trying to run compaction more than once on the same data is a futile effort as CouchDB
has already removed as much data as it could.

Compacting local databases is great, but it doesn't do much for us on our local machine,
where compression is more important than on our production database. Luckily, Cloudant
automatically handles compaction for us, so we don't have to worry about doing it ourselves.
If you try to trigger the _compact function using curl, you'll get a friendly reminder that
Cloudant has our back.

{"error":"forbidden","reason":"compaction is automatic on Cloudant"}

If you ever end up spinning up your own instance of CouchDB, then you'll want to make
sure you have a good methodology for handling compaction. Compaction isn't something
you want to run in a panicked situation, where you are seeing your server about to max
out. This is because if you are attempting to run compaction on a database that is nearing
its write capacity, then the compaction process may not complete, and worse, if the writes
keep happening during replication, then you may run out of disk space. So, with that in mind,
it's preferable to run compaction at off-peak times, and have it run semi-regularly to keep
everything clean.

Replicating your Data

[24]

Additionally, if you were to scale out your CouchDB instances into a clustered environment,
you could switch off write access to a node before compaction, and have it returned when
replication is complete. This will keep the write buffer from overloading.

What's next?
You should stop reading and start developing something new! As I mentioned before, I
will continue to incrementally add features like these and more to the Verge repository on
GitHub here https://github.com/timjuravich/verge. So, make sure to watch the
repository for updates and fork it if you'd like.

Again, I really appreciate the time we spent together in this book. Please feel free to reach
out to me on Twitter @timjuravich if you have any questions.

Happy developing!

Summary
I hope you enjoyed this chapter and the great features that CouchDB continues to throw our
way. Let's recap on everything we learned in this chapter:

 � We talked about replication and how to use it

 � We created some replication conflicts and handled them nicely

 � We played with continuous replication and database compaction

 � We pushed all of our data to Cloudant, so that our application had all of our data

 � We finished the book and can dominate the world using PHP and CouchDB

https://github.com/timjuravich/verge

