1 Graphics

Chapter 1: Introduction to Ensemble Techniques

Neural Network for Hypothyroid Classification

FTK, 63.5

TSH $>=5.95$

Dataset/ Model	Hypothyroid	Waveform	German	Iris	Pima Indian Diabetes
Neural Network	98.27\%	88.40\%	72.52\%	100.00\%	67.32\%
Logistic Regression	97.33\%	88.73\%	75.72\%	100.00\%	75.10\%
Naïve Bayes	97.33\%	86.01\%	80.83\%	100.00\%	78.21\%
Decision Tree	98.74\%	84.35\%	70.61\%	100.00\%	75.88\%
SVM	98.43\%	91.71\%	75.40\%	100.00\%	76.65\%

```
1 package is needed for this model and is not installed. (frbs). Would you like to
try to install it now?
1: yes
2: no
selection: |
```


Chapter 2: Bootstrapping

Chapter 3: Bagging

Chapter 4: Random Forests


```
plot_RF <- function(RF)\{
    n <- RF\$ntree
    for ( i in 1:n) \(\{\)
        tt <- getTree (RF, i, labelvar = TRUE)
        \(\mathrm{dt}<-\) to. dendrogram(tt)
        plot ( dt , center=TRUE, edgePar=1ist ( \(\mathrm{t} . \mathrm{cex}=1, \mathrm{p} . \operatorname{col}=\mathrm{NA}, \mathrm{p} .1 \mathrm{ty}=0\) )
        yaxt='n', horiz=TRUE)
        print (i)
    \}
\}
```


	$\begin{gathered} \text { GC2_RF4_V1 } \\ \text { variable } \end{gathered}$	mean_min_depth	no_of_nodes	accuracy_decrease	gini_decrease	no_of_trees	times_a_root	p_value
1	age	2.5	7750	0.00455	31.2	500	43	0.0e+00
2	amount	2.4	8512	0.00890	37.7	500	44	$0.0 \mathrm{e}+00$
3	checking	1.8	3347	0.03490	34.6	500	104	$9.8 \mathrm{e}-01$
4	coapp	5.6	1009	0.00272	4.5	456	10	1. $0 \mathrm{e}+00$
5	depends	5.6	1461	0.00022	4.3	486	0	1. $0 \mathrm{e}+00$
6	duration	2.3	6319	0.01343	28.1	500	59	$0.0 \mathrm{e}+00$
7	employed	3.0	4147	0.00254	16.8	500	14	2. 3e-31
8	existcr	5.1	2186	0.00084	6.2	499	1	1. $0 \mathrm{e}+00$
	foreign	7.8	403	0.00067	1.6	300	11	1. $0 \mathrm{e}+00$
10	history	2.6	3290	0.00499	17.0	500	51	1. $0 \mathrm{e}+00$
11	housing	4.3	1845	0.00071	6.6	496	19	1. $0 \mathrm{e}+00$
12	installp	4.2	3699	0.00065	11.1	500	1	$2.4 \mathrm{e}-05$
13	job	4.3	2612	0.00061	9.0	500	2	1. $0 \mathrm{e}+00$
14	marital	4.2	2847	-0.00059	10.3	499	1	1. $0 \mathrm{e}+00$
15	property	3.5	3401	0.00180	12.6	500	17	8. $6 \mathrm{e}-01$
16	purpose	2.3	4930	0.00372	27.3	500	42	4.3e-129
17	resident	4.4	3684	0.00024	10.7	500	1	6. 9e-05
	savings	2.3	2820	0.00995	17.9	500	80	1. $0 \mathrm{e}+00$
	telephon	5.9	1539	0.00034	4.6	487	0	1. $0 \mathrm{e}+00$

Relations between measures of importance

Chapter 5: The Bare Bones Boosting Algorithms


```
> boosting
function (formula, data, boos = TRUE, mfinal = 100, coeflearn = "Breiman",
    control, ...)
> gbm
function (formula = formula(data), distribution = "bernoulli",
    data = list(), weights, var.monotone = NULL, n.trees = 100,
    interaction.depth = 1, n.minobsinnode = 10, shrinkage = 0.001,
    bag.fraction = 0.5, train.fraction = 1, cv.folds = 0, keep.data = TRUE,
    verbose = "CV", class.stratify.cv = NULL, n.cores = NULL)
```


Chapter 6: Boosting Refinements

	mb 1	mb 2	mb 3	mb 4	mb 5
1	-0.2375	0.30382	0.341887	0.3332	0.400
2	-0.2375	0.30382	0.341887	0.3332	0.368
3	-0.7479	-0.27177	0.072900	0.2614	0.317
4	-0.0146	0.52949	0.681289	0.5718	0.624
5	-0.6307	-0.17281	0.105200	0.2788	0.323
6	-0.6307	-0.15168	0.030059	0.2297	0.323
7	-0.1922	0.09987	0.161135	0.4676	0.368
8	-0.6069	-0.19883	0.081071	0.2535	0.326
9	-0.2375	0.00700	0.179740	0.2616	0.338
10	-0.2009	0.30655	0.333049	0.2877	0.354
11	-0.5702	0.02514	0.169440	0.3162	0.325
12	-0.2375	0.11115	0.295751	0.3105	0.351
13	-0.6307	-0.15168	0.009839	0.2310	0.339
155	-0.3786	-0.11153	0.066041	0.2508	0.329
156	-0.1922	-0.36783	0.009775	0.2550	0.323
157	-0.3181	0.18975	0.206236	0.2970	0.347
158	-0.1922	0.18975	0.184170	0.3522	0.343
159	-0.3181	-0.03722	0.235859	0.2496	0.356
160	-0.7479	0.20146	0.169046	0.3433	0.336
161	-0.3786	0.20146	0.307440	0.3752	0.353
162	-0.3181	-0.32505	0.130531	0.2373	0.340
163	-0.2009	0.67787	0.514666	0.5280	0.424
164	-0.3181	0.12438	0.130471	0.2513	0.357
165	-0.3786	0.26382	0.060728	0.2829	0.326

Chapter 7: The General Ensemble Technique

Classifiers with Accuracy Worse Than Random Guess

Chapter 8: Ensemble Diagnostics

Chapter 9: Ensembling Regression Models

Variable Importance of Bagging

Chapter 10: Ensembling Survival Models

