Chapter 1:
Understanding HTTP, Go, and Echo

HTTP Request

+ Request Method
/| + Request Target
/| + Request Version

HTTP Message

. StartLine ! coxtendss (£1111]
+Headers " V77)
+ Body

-

HTTP Response

+ Status Code
+ Status Reason
+ Version

HTTP
Request

Launch

. O Read HTTP
Goroutine to © ° Protocol Request
Serve Request

Server "Listens”
For Connections

Server "accepts”
Listener Request

nethitp
Server

—

Launch Handler
Perform App
Logic

Handler Writes
To Response
Writer

HTTP
Response

Requester
Gets Response

Chapter 2: Developing Echo Projects

pIsdmg.meJ /\;erif'y
<<include>> Credentials Val‘f_!rgiz Ifﬂuth
1clude=>" Recieve <<includes=>
Token .
£
Create
| Reminder
User
Snooze
Get Reminder Reminder
. <=extend=>
Reminder
Originating
User - <<extend=>. RUP‘%‘GEE
L Edit Reminder J&- """ eminder
— -<<exlqnd)>
Tl Delete
. Reminder
Shared With
User
Alert
Notification
Service
Reminder
Scheduler Notification
Service

main package

|

handlers package

| l

middlewares
package

static package

bindings package

v

models package

e m
1

Middleware
Function 1

|

|

;
Middleware Middleware) Handler
Function 2 Enm Function n Function

Middleware Request Processing Pipeline

iy
L— = renderings package f¢——
P R End Processing Pipeline &| HTTP Response +{ Requestor
Requestor Reguest

Chapter 3: Exploring Routing Capabilities

/static/main.css

/reminder/123

/logout

/login

Chapter 4: Implementing Middleware

HTTP
Request

Requestor

End Processing Pipeling

HTTP Response

[

Requestor

Middleware Middleware Middleware Handler
Function 1 Function 2 amm Function n Function
Middleware Request Processing Pipeling
Middleware 1
Middleware 2

/ Middleware 3

HandlerFunction

Return

\ Return

Return

Return

A

Web Application J

Server Pre-Middleware Router Middleware Handler
Requestor T T T T
. Refjuest i i i i
| | H | |
* g call | calinext ; i i
| * "] i | |
! ! find handler ! ! !
| | H | |
| | *r———» | |
E E E E call E call next E
| | | [4 > |
' ' ' return ' ' '
| | ; o) ca |
! ! ! i ¢ >
i i i i i return i
i * b4
H | |
retu'm i i
i i i« H @ return to previous i
; : ' !
return ! :I return to previous
Response <—¢
o !

Middleware can stop the execution of the application before the next transition. In our case a middleware can return
before running the handler code. Pre-Middleware are also able to return before routing happens.

Chapter 5:
Utilizing the Request Context and Data Bindi

ngs

e
Request
Go Web Server
map[http.Request]

Requestor Request 1 -> map[interface{}jinterface(}
Spawn Request 2 -> map[interface (JJinterface()

- Request 3 -» map[interface{}jinterface(}

Gorilla Context

Every request is used as a key in
a global context map. In orderto
getiset to the context you need to
read/write from this global map.

) Get/'Set
Handler Goroutine

Garilla
Context

O Request

» Go Web Server

A -

Requestor

Spawn

Echo Context Echo

On startup echo will create a pool of
Echo Context structures which will
be assigned to handler routines as
requests come in. After a request
has been serviced, the context is
returned to the Context Pool for re-
use by a new request being
handled. This allows for extremely
limited allocations per request,
unlike other context models.

Assign Existing
Context to Handler

Caontext Pool

Handler Goroutine

Return Context
o Pool

Content-Type: application/jso

{
“username”; test”,
“password"est’,

n

—

Request

Requestor

Request Binding

‘;‘

Request Handler

LoginRequest

Username “json:“usermname™

Password “json:'password™

|

echo.Bind(new(LoginRequest))

Based an the Content Negotiation performed within the Echo Framewark,
your structure passed into "Bind” will be de-serialized based on how the
underlying serialization package (json/xmlietc) handles de-serialization.

Content-Type: applicationjson

{
"Message”: "Everything is good!”

Network

Requestor

\

Response

Response Rendering

Similar to the request binding, response

rendering is handled by Echo, and

uses the serialization technigue specified by the rendering method call
used within the handler. In this example we are rendering with JSOMN. This

will use the serialization methods within

the encoding/json package to

convert your response structure to the serialized format.

Request Handler

HealthCheckResponse

Message “json“message™

cJSON(HealthCheckResponse)

Chapter 6:
Performing Logging and Error Handling

Requestor Echo Framework Middleware/Handler Error Handler

A Q

Request

P
3!
*

'

Error Condition

/

Execute

Errar Returnad

'y

Errar Sent

.

Response Rendered

3

Service

Recover Middleware

Handler Function

panic()

recover()
return error

DefaultErrorHandler()

