Chapter 1:
Understanding HTTP, Go, and Echo
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Chapter 2: Developing Echo Projects
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Chapter 3: Exploring Routing Capabilities
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Chapter 4: Implementing Middleware
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Middleware can stop the execution of the application before the next transition. In our case a middleware can return
before running the handler code. Pre-Middleware are also able to return before routing happens.




Chapter 5:
Utilizing the Request Context and Data Bindi
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Every request is used as a key in
a global context map. In orderto
getiset to the context you need to
read/write from this global map.

) Get/'Set
Handler Goroutine

Garilla
Context

O Request

»  Go Web Server

A -

Requestor

Spawn

Echo Context Echo

On startup echo will create a pool of
Echo Context structures which will
be assigned to handler routines as
requests come in. After a request
has been serviced, the context is
returned to the Context Pool for re-
use by a new request being
handled. This allows for extremely
limited allocations per request,
unlike other context models.
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Content-Type: application/jso

{
“username”; test”,
“password"est’,
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echo.Bind(new(LoginRequest))

Based an the Content Negotiation performed within the Echo Framewark,
your structure passed into "Bind” will be de-serialized based on how the
underlying serialization package (json/xmlietc) handles de-serialization.

Content-Type: applicationjson

{
"Message”: "Everything is good!”
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Similar to the request binding, response

rendering is handled by Echo, and

uses the serialization technigue specified by the rendering method call
used within the handler. In this example we are rendering with JSOMN. This

will use the serialization methods within

the encoding/json package to

convert your response structure to the serialized format.
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Chapter 6:
Performing Logging and Error Handling
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