
The Java API quick reference
You can create both local (that is, without using a remote server) and remote
database with the Java API. Each kind of database has a specific related class,
but they expose the same interface:

•	 To create a local document database, use the ODatabaseDocumentTx class:
ODatabaseDocumentTx db = new ODatabaseDocumentTx
("local:<path>/<db-name>").create();

•	 To create a local graph database, use the OGraphDatabase class:
OGraphDatabase db = new GraphDatabase("local:<path>/<db-name>").
create();

•	 To create a local object database, use the OObjectDatabaseTx class:
OGraphDatabase db = new GraphDatabase("local:<path>/<db-name>").
create();

•	 To create a remote database:
new OServerAdmin("remote:<db-host>").connect(<root-
username>,<root-password>).createDatabase(<db-name>,<db-
type>,<storage-type>).close();

•	 To drop a remote database:
new OServerAdmin("remote:<db-host>/<db-name>").connect(<root-
username>,<root-password>).dropDatabase();

Where:
•	 path: This specifies the path where you wish to create the new database.
•	 db-host: This is the remote host. It could be an IP address or the name

of the host.
•	 root-user: This is the root username as defined in the server config file.
•	 root-password: This is the root password as defined in the server config file.
•	 db-name: This is the name of the database.
•	 db-type: This specifies the type of database. It can be "document" or "graph".
•	 storage-type: This specifies the storage type. It can be local or memory.

local means that the database will be persistent, while memory means that
the database will be volatile.

Appendix

[2]

Open and close connections
To open a connection, the open API is available:

<database>(<db>).open(<username>,<password>);

Where:

•	 database: This is a database class. It can be:
°° ODatabaseDocumentTx for a document database
°° OGraphDatabase for a graph database
°° OObjectDatabaseTx for an object database (remember to register

your model classes)

database.getEntityManager().registerEntityClass("<your-model-
package>");

•	 db: This is the path to the database. Its syntax is local:<path>/<db-name>
for local databases or remote:<db-host>:<db-port>/<db-name> for
remote databases.

•	 username: This specifies the username to be used.
•	 password: This specifies the password.

In a multithreaded environment, you may use the connection pool. In this case, the
connections are established only once and then assigned to the threads. Remember
to close the connection when the thread no longer uses it. This makes the connection
available to other threads:

•	 Document databases:
ODatabaseDocumentTx database = ODatabaseDocumentPool.global().
acquire("<db>","<username>", "<password>");

•	 Graph databases:
OGraphDatabase database = OGraphDatabasePool.global().
acquire("<db>", "<username>", "<password>");

•	 Object databases:
OObjectDatabaseTx database = OObjectDatabasePool.global().
acquire("<db>", "<username>", "<password>");

To close a connection, use the database's close() method.

Appendix

[3]

Schema manipulation
To get access to the database schema, you must use the getSchema() API:

OSchema schema=database.getMetadata().getSchema();

Where database is an instance of an opened database.

Classes
To manage classes you have to use the schema object:

•	 To create a new class, use the following statement:
OClass newClass = schema.createClass("<class-name>");

•	 To get an already created class, use the following statement:
OClass aClass = schema.getClass("<class-name>");

•	 To drop a class, use the following statement:
database.getMetadata().getSchema().dropClass("<class-name>");

Where class-name is the name of the new class.

When a class is dropped, its records are not deleted. You
must delete them before dropping the class. You may use the
following command:
database.command(new OCommandSQL("TRUNCATE
CLASS <class-name>")).execute();

Class fields
To create, modify, or remove class fields (also known as properties), you have to act
using the OClass's methods:

•	 To create a property, use the following statement:
aClass.createProperty("<new-property>", OType.INTEGER);

The OType enumerator contains all the supported property types.
For example, to create a property of type link for another class,
use the following statement:
aClass.createProperty("<property-name>", OType.LINK, otherClass);

Appendix

[4]

•	 To define constraints against properties, there are several methods exposed
by the OProperty class. These methods are as follows:

°° setNotNull()

°° setMandatory()

°° setReadonly()

°° setMin()

°° setMax()

°° setRegexp()

°° createIndex()

Example:
aClass.getProperty("<property-name").setMandatory(true).
setNotNull(true);

•	 To drop a property:
aClass.dropProperty("<property-name>");

When you drop a property from a class, the records belonging to
that class do not lose their properties. You only change the class's
schema definition. To remove a property from records, execute the
following command:

database.command(new OCommandSQL("UPDATE <class-
name> REMOVE <property-name>")).execute();

Indices management
Indices are managed by the IndexManager class. To obtain an instance of the
manager, use the following statement:

OIndexManager idxManager = database.getMetadata().getIndexManager();

Here, database is an open instance of a database connection. The available APIs are
as follows:

•	 getIndex ("<index-name>"): This returns an instance of the OIndex class
representing the request index

•	 existsIndex("<index-name>"): This returns true/false according to the
existence of the requested index

•	 dropIndex("<index-name>"): This drops the specified index

Appendix

[5]

To create an index there are several options according to the type of index you need:

•	 To create an index against a class property, the most convenient way is to use
the createIndex method of OClass:
aClass.createIndex("<index-name>", OClass.INDEX_TYPE.<index-type>,
"<property-names>");

Where:
°° index-type: This is a value among the OClass.INDEX_TYPE

enumerator
°° property-name: This is an already existing class property or a

comma-separated list of properties' names for composite indices

•	 To create a dictionary in the database, you could use the createIndex()
method of the OIndexManager class:
idxManager.createIndex(<dictionary-name>, OClass.INDEX_TYPE.
DICTIONARY.toString(), new OSimpleKeyIndexDefinition(OType.
STRING), null, null);

•	 Once you obtain an index instance, you can get and/or put a document in it:
OIdentifiable record = index.get("<key>");
if(record!= null) ODocument doc=((ODocument) record.
getRecord());

Data management
Once you have opened a connection, you can manipulate data in the same thread
without making any explicit reference to the connection itself.

Documents management
The class used to manipulate a document is the ODocument class.

•	 A document can be created as follows:
ODocument doc = new ODocument("<class-name>");
doc.field("<property>", <value>);
doc.save();

Where value is the value to be assigned to property. It can be of any
supported data type, even another ODocument instance (to embed documents).

Appendix

[6]

•	 A document can be loaded as follows:
ODocument doc=database.load(<rid>);

Where database is the opened database connection and rid is a valid
document's RID.

•	 To update a document, you have to load it, update it, and then save it:
ODocument doc = database.load(<rid>);
doc.field("property-name",<new-value>);
doc.save();

•	 You can merge two documents using the merge() method. It takes
the properties of a given ODocument instance and merges them to the
document as follows:
theDocument.merge(otherDocument, iAddOnlyMode,
iMergeSingleItemsOfMultiValueFields);

Where:
°° theDocument: This is an ODocument instance. It is the document to

which the merge method will be applied.
°° otherDocument: This is another ODocument instance. It is the other

document to be merged.
°° iAddOnlyMode: This is a Boolean value. If set to true, the method

only adds or replaces the otherDocument fields. Otherwise, all the
properties that are not present in otherDocument will be removed
from the theDocument instance.

•	 To delete a document:
doc.delete();

Vertices and edges management
Vertices and edges are particular kinds of documents, so to manipulate them, you
have to use the ODocument class. However, in the following statements, database is
an instance of the OGraphDatabase class:

•	 A vertex can be created as follows:
ODocument node = database.createVertex();

•	 An edge between two vertices can be created as follows:
ODocument edge=database.createEdge(vertex1,vertex2);

Appendix

[7]

•	 A vertex and an edge can be deleted as follows:
database.removeVertex(vertex);
database.removeEdge(edge);

To delete edges and vertices, you must use a specific API
rather than the ODocument ones.

•	 All the outgoing or incoming edges of a vertex can be retrieved as follows:
database.getOutEdges(node);
database.getInEdges(node);

•	 All the outgoing or incoming vertices of an edge can be retrieved as follows:
database.getInVertex(edge);
database.getOutVertex(edge);

Objects management
If db is an instance of the ObjectDatabaseTx class, and PojoClass is your POJO
class, you have:

•	 db.getEntityManager().registerEntityClass(PojoClass.class): This
registers PojoClass to the database engine.

•	 PojoClass pojo = db.newInstance(PojoClass.class): This obtains a
new instance of PojoClass.

•	 db.save(pojo): This persists the pojo parameter. It creates the relative
document if this is a new object or updates it if it already exists.

•	 db.delete(pojo): This deletes the pojo parameter and the related
document from the database.

•	 db.attach(pojo): This attaches the pojo parameter and binds it to its
related document representation in the database.

•	 db.attachAndSave(pojo): This attaches the pojo parameter and persists it.
•	 db.detach(pojo): This detaches the pojo parameter from its document

representation. It returns a proxied object.
•	 db.detach(pojo,true): This is similar to the previous one, but it returns a

non-proxied instance.
•	 db.detachAll(pojo): This detaches all the pojo's tree recursively. It can

cause an StackOverflowException exception on big graphs.

Appendix

[8]

Queries
OrientDB can execute SQL queries via the Java API. So you can execute all the SQL
queries within your Java code. There is support for native queries as well. However,
although these queries may seem faster than the SQL ones due to the absence of the
SQL parser overload, they are generally slower because they don't use indices and
they are not optimized internally by the database engine. Furthermore, they offer
fewer operators than the SQL language:

•	 To execute an SQL query:
List<ODocument> result = db.query(new
OSQLSynchQuery<ODocument>("<sql-statement>")).execute();

•	 To use a prepared statement you can use ? for positional parameters or the
:var notation for named parameters:
OSQLSynchQuery<ODocument> query = new
OSQLSynchQuery<ODocument>("<sql-statement>");
Map<String,Object> params = new HashMap<String,Object>();
params.put("<parameter>", "<value>");
List<ODocument> result = database.command(query).execute(params);

•	 To execute an SQL command (update or delete) rather than a query, you
must use the OCommandSQL class instead of the OSQLSynchQuery class.

•	 To execute native queries, you must use the OQueryContextNative class:
List<ODocument> johnsPosts = database.query(new
ONativeSynchQuery<ODocument, OQueryContextNative<ODocument>>
 (database, "Posts", new OQueryContextNativeSchema<ODocume
nt>()) {
 @Override
 public boolean filter(OQueryContextNative<ODocument>
iRecord) {
 return iRecord.field("author").field("name").eq("John").
go();
 };
 });

•	 A List of records belonging to a class can be returned as follows:
database.browseClass("<class-name>");

•	 The number of records belonging to a class can be returned as follows:
database.countClass("<class-name>");

Appendix

[9]

Don't forget that the field names are case sensitive, while class
names are case insensitive. And also don't forget to invoke the
go() method at the end of the operators chain.

Traverse
To traverse a graph or a document database, you can use the OTraverse class, which
exposes several methods to build traverse commands. The complete documentation
is available at the official OrientDB wiki https://github.com/nuvolabase/
orientdb/wiki/Java-Traverse.

OTraverse exposes Iterator and implements the Iterable interface, so you can
iterate through its result. This is very useful because an Iterator uses less system
resources than loading an entire result set in a single shot.

Until now, we have seen an overview of the available Java API. You can
find the complete reference at the official OrientDB wiki. Furthermore, since
the OQueryContextNative class is not well documented, you can find its
source code located at https://github.com/nuvolabase/orientdb/blob/
ef7d7c9d0a54a1d6bf9b9cac444152f753e39a2a/core/src/main/java/com/
orientechnologies/orient/core/query/nativ/OQueryContextNative.java,
where you can see an entire set of available fluent APIs. In the next section, we will
take a look at some of the most useful configuration parameters available to tune an
OrientDB server.

Configuration parameters reference
OrientDB has several configuration parameters that control almost every aspect of
the server behavior.

To dump the current server configuration
You can inspect the current configuration in different ways:

•	 Via the console tool using the config command
•	 At server startup via the JVM parameter:

java -Denvironment.dumpCfgAtStartup=true ...

Appendix

[10]

•	 At runtime via the Java API:
OGlobalConfiguration.dumpConfiguration(printStream);

Where printStream is an instance of the PrintStream class, for example,
System.out.

To set a configuration parameter
All parameters affect the current JVM. So, for example, modifying the cache size in
a client JVM does not affect the cache size on the server JVM. The following are the
options to set a parameter value:

•	 Via the console tool:
config set <key> <value>

•	 At server startup via the JVM parameter:
java -D<key>=<value>

•	 At server startup via the configuration file:
<properties>
 ...
 <entry name="<key>" value="<value>" />
 ...
</properties>

•	 At runtime via the Java API using the OGlobalConfiguration
enumerator. Each configuration parameter has a corresponding
entry in OGlobalConfiguration:
OGlobalConfiguration.<parameter>.setValue(<value>);

Configuration parameters
Here you will find the configuration parameters grouped by scope. Each table has
four columns:

•	 Parameter: This is the parameter key to be used in the XML configuration
files in the console and also as JVM startup parameters.

•	 OGlobalConfiguration: This is the enumerator of all the configuration
properties. You can use it to alter parameter values using Java.

•	 Type: This is the type of the value accepted by a parameter.
•	 Description: This is a brief description about the parameter.

All the parameters are valid for both client and server, except for some specific ones.

Appendix

[11]

Environment
These parameters allow you to inspect the current configuration and to set specific
multithreaded options:

Parameter OGlobalConfiguration Type Description

environment.
dumpCfgAtStartup

ENVIRONMENT_DUMP_
CFG_AT_STARTUP

Boolean This dumps the configuration
settings at startup.

environment.
concurrent

ENVIRONMENT_
CONCURRENT

Boolean This specifies if OrientDB is
running in a multithreaded
environment. Set this to
false to turn off the internal
lock management.

Memory
Garbage collector configurations:

Parameter OGlobalConfiguration Type Description

jvm.
gc.delayForOptimize

JVM_GC_DELAY_FOR_
OPTIMIZE

Long It specifies the minimum
number of seconds since
last System.gc()
after tree optimization.
Default is 600.

Storage
The following are very low level storage parameters, generally, you need not
modify them:

Parameter OGlobalConfiguration Type Description

storage.cluster.
useNodeIdAsCluster
Position

USE_NODE_ID_
CLUSTER_POSITION

Boolean

storage.keepOpen STORAGE_KEEP_OPEN Boolean If true, the storage
will be kept open even
when a database is
closed. The storage
will be closed at server
shutdown. Default is
false.

Appendix

[12]

Parameter OGlobalConfiguration Type Description

storage.lockTimeout STORAGE_LOCK_
TIMEOUT

Integer This specifies the
maximum timeout (in
milliseconds) to lock
the storage.

storage.record.
lockTimeout

STORAGE_RECORD_
LOCK_TIMEOUT

Integer This specifies the
maximum timeout (in
milliseconds) to lock a
single shared record.

storage.
useTombstones

STORAGE_USE_
TOMBSTONES

Boolean If true, that is, when a
record is deleted, its
cluster space will not
be reallocated.

Cache
The following are the cache parameters, and you can enable/disable them and
modify some of their behaviors:

Parameter OGlobalConfiguration Type Description

cache.
level1.
enabled

CACHE_LEVEL1_
ENABLED

Boolean This enables/disables the level 1 cache.

cache.
level1.
size

CACHE_LEVEL1_SIZE Integer This expresses the size of the level 1
cache in terms of the number of records
to be kept in memory. -1 means no
limit, but if the system will run out of
heap space, the cache will be freed.

cache.
level2.
enabled

CACHE_LEVEL2_
ENABLED

Boolean This enables/disables the level 2 cache.

cache.
level2.
size

CACHE_LEVEL2_SIZE Integer This expresses the size of the level 2
cache in terms of the number of records
to be kept in memory. -1 means no
limit, but if the system will run out of
heap space, the cache will be freed.

Appendix

[13]

Parameter OGlobalConfiguration Type Description

cache.
level2.
impl

CACHE_LEVEL2_IMPL String This is the canonical name of the
class that implements the level
2 cache. By default, it is com.
orientechnologies.orient.
core.cache.ODefaultCache. If
you want to write your own cache
class, it must implement the com.
orientechnologies.orient.
core.cache.OCache interface.

cache.
level2.
strategy

CACHE_LEVEL2_
STRATEGY

Integer This specifies the strategy to be
adopted when a record is read from
the cache. 0 = pop the record from the
cache, 1 = copy the record from the
cache. The default is 0.
With the POP strategy, the record is
removed from the cache and passed
to the requesting thread. Once the
thread's connection is closed, the
record will be pushed again in the
cache.
With the COPY strategy, a new record
will be created and passed to the
requesting thread. The original record
remains in the cache and it will also be
available to the other threads.
If environment.concurrent is set
to FALSE, no COPY will be performed.

Database
The following are database-specific settings:

Parameter OGlobalConfiguration Type Description
object.
saveOnlyDirty

OBJECT_SAVE_ONLY_
DIRTY

Boolean The object database saves
only the object bound to dirty
records. Default is false.

Appendix

[14]

Parameter OGlobalConfiguration Type Description
db.mvcc DB_MVCC Boolean Multi-Version Concurrency

Control (MVCC) is the check
that the DB engine performs
against the version field to
prevent stale data updates
even outside the transactions
(in this case, an OConcurrent
ModificationExceptions
exception will be thrown). If
you disable this feature, no
check will be performed and
performance will also increase,
but in a multithreaded
environment, there is no
guarantee that a thread does
not update an older version of
a record.

db.mvcc.
throwfast

DB_MVCC_THROWFAST Boolean This allows us to speed
up the throw of an
OConcurrentModifi
cationExceptions
exception. In this case, no
context is generated and it
is useful when details are
unnecessary. Default is false.

db.validation DB_VALIDATION Boolean If set to false, this allows us
to skip the constraints defined
in the classes schema. Default
is true.

db.use.
distributed
Version

DB_USE_
DISTRIBUTED_
VERSION

String In a distributed environment,
use a "distribute convention"
for the version field, that is
not just a counter, but which
contains a timestamp and the
MAC address of the server.

Appendix

[15]

Transactions
The following table shows how you can modify the transactions' behaviors:

Parameter OGlobalConfiguration Type Description
nonTX.
recordUpdate.
synch

NON_TX_RECORD_
UPDATE_SYNCH

Boolean If set to true, the DB
executes a sync against
the filesystem at every
record operation. This
slows down the records'
updates, but ensures
reliability on unreliable
drives. Default is false.

nonTX.clusters.
sync.immediately

NON_TX_CLUSTERS_
SYNC_IMMEDIATELY

String This is a list of clusters to
sync immediately after
updates, separated by
commas. The default is
manindex, which is the
default cluster for manual
indices.

tx.useLog TX_USE_LOG Boolean By default, transactions
use a logfile to rollback
the data in case of a crash.
If it is set to false, it
disables the use of the
transaction logfile.

tx.log.fileType TX_LOG_TYPE String This is the type of the
transaction logfile (mmap
or classic; mmap stands
for memory mapping, that
is, the file is used with
the memory mapping
technique to speed up the
read/write operation).
Default is classic.

tx.log.synch TX_LOG_SYNCH Boolean If set to true, the DB
executes a sync against
the filesystem at every
log operation. This slows
down the transactions,
but ensures reliability on
unreliable drives. Default
is false.

Appendix

[16]

Parameter OGlobalConfiguration Type Description
tx.commit.synch TX_COMMIT_SYNCH Boolean This synchronizes the

storage immediately after
a transaction commit.
Default is false.

Indices
These are the parameters that are used to change the behaviors of both the manual
and automatic indices:

Parameter OGlobalConfiguration Type Description
index.auto.
rebuildAfterNot
SoftClose

INDEX_AUTO_
REBUILD_AFTER_
NOTSOFTCLOSE

Boolean This automatically
rebuilds the indices if
they are not previously
closed correctly in case
of a crash.

index.auto.lazy
Updates

INDEX_AUTO_LAZY_
UPDATES

Integer This sets the maximum
number of item updates
for automatic indices
to cache before they are
flushed. -1 indicates that
the flush is performed on
a transaction commit or
a DB close.

index.manual.
lazyUpdates

INDEX_MANUAL_LAZY_
UPDATES

Integer This sets the maximum
number of item updates
for manual indices to
cache before they are
flushed. -1 indicates that
the flush is performed on
a transaction commit or
a DB close.

The following properties are used internally by the engine for indices management.
Indices are built using an MVRB-TREE, an OrientDB proprietary data structure. You can
try to modify their values to increase performance, but in general, this is not necessary:

Parameter OGlobalConfiguration Type Description
mvrbtree.timeout MVRBTREE_TIMEOUT Integer This specifies the timeout

(in milliseconds) to acquire
a lock against an index.

Appendix

[17]

Parameter OGlobalConfiguration Type Description
mvrbtree.
nodePageSize

MVRBTREE_NODE_
PAGE_SIZE

Integer This specifies the page size
(in entries) of each node of
the MVRB-TREE.

mvrbtree.
loadFactor

MVRBTREE_LOAD_
FACTOR

Float This is the HashMap load
factor.

mvrbtree.
optimizeThreshold

MVRBTREE_OPTIMIZE_
THRESHOLD

Integer This performs an
automatic optimization of
the index structure after
the specified number of
operations. -1 means
never.

mvrbtree.
entryPoints

MVRBTREE_
ENTRYPOINTS

Integer This specifies the number
of entry points to start the
searching entries.

mvrbtree.
optimizeEntry
PointsFactor

MVRBTREE_OPTIMIZE_
ENTRYPOINTS_FACTOR

Float This is the multiplying
factor to be applied
to the entry points
list to determine if an
optimization is needed.

mvrbtree.
entryKeys
InMemory

MVRBTREE_ENTRY_
KEYS_IN_MEMORY

Boolean If it is true, it keeps the
unserialized keys in the
memory.

mvrbtree.
entryValues
InMemory

MVRBTREE_ENTRY_
VALUES_IN_MEMORY

Boolean If this is true, it keeps the
unserialized values in the
memory.

mvrbtree.
ridBinary
Threshold

MVRBTREE_RID_
BINARY_THRESHOLD

Integer This defines the threshold
for sets of RIDs as a
number of entries to use
the binary streaming
instead of classic string
streaming. -1 never uses
binary streaming.

mvrbtree.
ridNodePageSize

MVRBTREE_RID_NODE_
PAGE_SIZE

Integer For sets of RIDs, page size
(in entries) of each node of
the MVRB-TREE.

hashIndex.
bufferSize

HASH_INDEX_BUFFER_
SIZE

Integer This specifies the size of a
page buffer in MB.

mvrbtree.
ridNodeSaveMemory

MVRBTREE_RID_NODE_
SAVE_MEMORY

Boolean If it is true, it does not
keep the RIDs in memory.

Appendix

[18]

Collection
The following is the only setting available to alter the behavior of how OrientDB acts
on a collection (generally, you do not have to touch it):

Parameter OGlobalConfiguration Type Description
lazyset.
workOnStream

LAZYSET_WORK_ON_
STREAM

Boolean If this is true, it works directly
on the streamed buffer to reduce
memory footprint and improve
performance.

I/O
The following are filesystem-specific settings, from file lock behaviour to filesystem
access strategies:

Parameter OGlobalConfiguration Type Description
file.lock FILE_LOCK Boolean This locks the files when they

are in use.
file.defrag.
strategy

FILE_DEFRAG_
STRATEGY

Integer This is the strategy to adopt for
file defragmentation. 0: sync
defrag, 1: async defrag.

file.defrag.
holeMax
Distance

FILE_DEFRAG_HOLE_
MAX_DISTANCE

Integer This specifies the maximum
distance in bytes between holes
in datafiles that trigger a defrag.
-1 means dynamic size.

file.mmap.
useOld
Manager

FILE_MMAP_USE_OLD_
MANAGER

Boolean There are two MMAP file
managers. The old one is
deprecated but still available.

file.mmap.
autoFlush.
timer

FILE_MMAP_
AUTOFLUSH_TIMER

Integer This auto flushes the memory
mapped blocks after every
specified second. It is available
only to the new map manager.

file.mmap.
autoFlush.
unusedTime

FILE_MMAP_
AUTOFLUSH_UNUSED_
TIME

Integer This removes the unused
memory mapped blocks
after the specified number of
seconds. It is available only to
the new map manager.

file.mmap.
lockMemory

FILE_MMAP_LOCK_
MEMORY

Boolean This specifies if the allocated
memory can be swapped or not.
It is available only to the new
map manager.

Appendix

[19]

Parameter OGlobalConfiguration Type Description
file.mmap.
strategy

FILE_MMAP_STRATEGY Integer This is only available with the
deprecated MMAP manager.
The new one specifies the value;
4 to disable MMAP, any other
value enables it:
0: Always use MMAP
1: Use MMAP on writes and
reads, only if the block pool is
free
2: Use MMAP on writes and
reads, only when the block pool
is already available
3: Use MMAP on writes and
reads, only if the block pool is
already available
4: Never use MMAP

file.mmap.
blockSize

FILE_MMAP_BLOCK_
SIZE

Integer This specifies the size of the
memory mapped block in bytes.
It is available only to the old
map manager.

file.mmap.
bufferSize

FILE_MMAP_BUFFER_
SIZE

Integer This specifies the size of the
buffer for direct access to the file
through the channel in bytes.

file.mmap.
maxMemory

FILE_MMAP_MAX_
MEMORY

Long Max memory allocable by the
memory mapping manager
in bytes. The limit will vary
depending on the system. It is
available only to the old map
manager.

file.mmap.
overlap
Strategy

FILE_MMAP_OVERLAP_
STRATEGY

Integer This specifies the strategy to
use when a request overlaps
the in-memory buffers: 0: Use
the channel access, 1: Force the
in-memory buffer and use the
channel access, 2: Always create
an overlapped in-memory
buffer. It is available only to the
old map manager.

Appendix

[20]

Parameter OGlobalConfiguration Type Description
file.mmap.
forceDelay

FILE_MMAP_FORCE_
DELAY

Integer It specifies the delay time in
milliseconds to wait between
forced flushes of the memory-
mapped block to disk. This
value is used also when
the engine tries to delete
the DB files in case of DROP
DATABASE.

file.mmap.
forceRetry

FILE_MMAP_FORCE_
RETRY

Integer It specifies the number of times
the memory-mapped block will
try to flush to disk. This value is
used also when the engine tries
to delete the DB files in case of
DROP DATABASE.

jna.disable.
system.
library

JNA_DISABLE_USE_
SYSTEM_LIBRARY

Boolean It disables the system-provided
JNA support and uses those
shipped with OrientDB.

file.cluster.
useLHPEPS

USE_LHPEPS_CLUSTER Boolean It indicates whether the cluster
file should be saved as a simple
persistent list or as a hash map.

file.cluster.
useMemory
LHCluster

USE_LHPEPS_MEMORY_
CLUSTER

Boolean It indicates whether the cluster
file should be saved as a simple
persistent list or as a hash map.

Network
The following are network and remote protocol-related settings:

Parameter OGlobalConfiguration Type Description
network.socket
BufferSize

NETWORK_SOCKET_
BUFFER_SIZE

Integer It is the buffer size of the
TCP/IP socket.

network.
socketTimeout

NETWORK_SOCKET_
TIMEOUT

Integer It specifies the timeout
of the TCP/IP socket in
milliseconds.

network.retry NETWORK_SOCKET_
RETRY

Integer It specifies the number
of attempts to obtain a
connection against the server.

network.
retryDelay

NETWORK_SOCKET_
RETRY_DELAY

Integer It specifies the number
of milliseconds to wait
between attempts to obtain a
connection against a server.

Appendix

[21]

Parameter OGlobalConfiguration Type Description
network.binary.
loadBalancing.
enabled

NETWORK_BINARY_
DNS_LOADBALANCING_
ENABLED

Boolean It tells the engine the
DNS that resolves the
OrientDB server address as
a .txt record for DNS load
balancing.

network.binary.
loadBalancing.
timeout

NETWORK_BINARY_
DNS_LOADBALANCING_
TIMEOUT

Integer It specifies the timeout (in
milliseconds) to wait for the
answer from the DNS about
the .txt record for load
balancing.

network.binary.
maxLength

NETWORK_BINARY_
MAX_CONTENT_LENGTH

Integer It tells the TCP/IP to chunk
the size in bytes for binary
requests.

network.binary.
debug

NETWORK_BINARY_
DEBUG

Boolean If it is true, it prints all the
data incoming on the binary
channel.

network.http.
maxLength

NETWORK_HTTP_MAX_
CONTENT_LENGTH

Integer It specifies the maximum
content length in bytes for
HTTP requests.

network.http.
charset

NETWORK_HTTP_
CONTENT_CHARSET

Integer It represents an HTTP
response charset; default is
UTF-8.

network.http.
sessionExpire
Timeout

NETWORK_HTTP_
SESSION_EXPIRE_
TIMEOUT

Integer It specifies the HTTP session
timeout in seconds.

Profiler
The following are internal profiler and statistics settings that are useful for
performance tuning:

Parameter OGlobalConfiguration Type Description
profiler.
enabled

PROFILER_ENABLED Boolean It enables/disables the internal
profiler, statistics, and counters.

profiler.
config

PROFILER_CONFIG String It consists of comma-separated
values of profiler-specific
configuration parameters.
They are: <seconds-for-
snapshot>,<archive-
snapshot-size>,<summary-
size>.

Appendix

[22]

Parameter OGlobalConfiguration Type Description
profiler.
autoDump.
interval

PROFILER_AUTODUMP_
INTERVAL

Integer It specifies the time interval in
seconds between the automatic
dump of profiler metrics. 0 disables
the auto dump.

Log
The following are file and console log level settings:

Parameter OGlobalConfiguration Type Description
log.
console.
level

LOG_CONSOLE_LEVEL String It is the console logging level. Its
values are the same as that of java.
util.logging.Level.

log.file.
level

LOG_FILE_LEVEL String It is the file logging level.

Client
The following settings are specific only for Java clients:

Parameter OGlobalConfiguration Type Description
client.channel.
minPool

CLIENT_CHANNEL_
MIN_POOL

Integer It specifies the minimum pool
size in number of connections.

client.channel.
maxPool

CLIENT_CHANNEL_
MAX_POOL

Integer It specifies the maximum pool
size in number of connections.

client.
connectionPool.
waitTimeout

CLIENT_CONNECT_
POOL_WAIT_TIMEOUT

Integer It specifies the time in
milliseconds to wait to
obtain a connection from
the pool, otherwise an
OLockException exception
is raised.

client.channel.
dbReleaseWait
Timeout

CLIENT_DB_RELEASE_
WAIT_TIMEOUT

Integer It specifies the delay in
milliseconds between attempts
to resend a command to a
frozen DB.

Appendix

[23]

Server
The following settings are specific for JVMs that run an OrientDB server:

Parameter OGlobalConfiguration Type Description
server.channel.
cleanDelay

SERVER_CHANNEL_
CLEAN_DELAY

Integer It specifies the time
(delay) in milliseconds
to check the pending
closed connections.

server.cache.
staticFile

SERVER_CACHE_FILE_
STATIC

Boolean It enables/disables
the cache for static
resources for the HTTP
embedded server.

server.log.
dumpClientException
FullStackTrace

SERVER_LOG_DUMP_
CLIENT_EXCEPTION_
FULLSTACKTRACE

Boolean If true, it dumps the
full stack trace of any
exception that is sent to
the client.

server.log.
dumpClient
ExceptionLevel

SERVER_LOG_DUMP_
CLIENT_EXCEPTION_
LEVEL

String It defines the level
of dumps of the
exceptions sent to the
clients. The values
are the same as that
of java.util.
logging.Level.

We have seen the dozens of configuration parameters available to modify almost
every aspect of both OrientDB Java clients and servers. In the next chapter, there
are some links to the most useful resources available on the Internet.

Bibliography and resources
In this section there are some links to useful resources available on the Internet.
I suggest you always keep an eye always on the official forum hosted by Google
Groups. Furthermore, if you don't find something on the official wiki on GitHub,
try to perform a search on the old wiki on Google Code:

•	 OrientDB official site: This is the OrientDB home site. Here you
can find the latest stable builds and links to other useful stuff
(http://www.orientdb.org/).

•	 OrientDB official documentation wiki: The wiki and the source code are
hosted on GitHub at https://github.com/nuvolabase/orientdb/wiki.

Appendix

[24]

•	 The OrientDB official code repository is found at:
https://github.com/nuvolabase/orientdb

•	 The deprecated wiki site:
http://code.google.com/p/orient/wiki/Main?tm=6

•	 OrientDB official discussion forum: This is the official discussion forum.
This is the place where OrientDB users and its development team meet each
other. If you have some problem, try to search the forum and then ask a
question. I'm sure you will find your answer here:
https://groups.google.com/forum/?fromgroups#!forum/orient-
database

•	 OrientDB tutorials: Getting started and step-by-step How to's:
https://github.com/nuvolabase/orientdb/wiki/Tutorials

http://devdocs.inightmare.org/introduction-to-orientdb-graph-
edition/

°° In Italian at http://www.html.it/articoli/nosql-in-java-
introduzione-ad-orientdb-1/

•	 OrientTechnologies: This is the company behind the development of
OrientDB. You can start from its website to explore the OrientDB world:
http://www.orientechnologies.com/

•	 NuvolaBase, the OrientDB in the cloud: NuvolaBase offers an OrientDB
cloud solution. You can use OrientDB without installing it, even for free at
http://www.nuvolabase.com/site/.

•	 OrientDB in the cloud and OrientDB Data as a service provider:
http://www.nuvolabase.com/site/index_cloud.html

•	 Luca Garulli's (CEO at NuvolaBase LDT) SlideShare account: Luca Garulli
is the CEO of NuvolaBase Ltd and the OrientDB team leader. He gives talks
and presentations around the world on a regular basis, so I suggest you
follow him on SlideShare, because there is always something new to learn
about graph database design and OrientDB uses (http://www.slideshare.
net/lvca).

•	 Luca Garulli's blog:
http://zion-city.blogspot.it/

•	 Official OrientDB Twitter account:
https://twitter.com/nuvolabase

Appendix

[25]

•	 Google+ page:
https://plus.google.com/u/0/108716918285358206552/posts

•	 Google+ community page:
https://plus.google.com/u/0/communities/101799593865844060425

•	 The TinkerPop stack website: The TinkerPop project groups an entire set
of specifications and frameworks to use against any graph database that
supports its default standard (http://www.tinkerpop.com/).

OrientDB 1.5.0
Recently the OrientDB team released a new major stable version: Version 1.5.0.

This release introduces some new features and signals a big milestone in the history
of this database. In the official download page, now you will find the 1.5.0 package;
meanwhile the other releases, including the 1.3.0 version, are available at https://
code.google.com/p/orient/downloads/list?can=1&q=&colspec=Filename+Sum
mary+Uploaded+Size.

The graph database
The team intent is to provide a full compliance to the TinkerPop Blueprints, so it
has been decided to deprecate the OrientDB native Java API and to promote the
Blueprint interface since Version 1.4.0.

You can read the announcement at http://nuvolabase.blogspot.it/2013/04/
orientdb-new-graphdb-engine-in-beta.html.

However, the support for the native Java API will be assured.

The first consequence of this decision is that the new Graph API are available only
in the Graphed Edition, and the Standard Edition does not manage graph-related
commands. So, if you plan to model your data domain as a graph, you must use the
Graphed Edition. Anyway, if your client uses the deprecated native Java API, it will
still work, although you need to upgrade the client libraries.

The OGraphVertex and the OGraphEdge classes were removed from the graph
databases. Now only the aliases V and E are supported.

Appendix

[26]

Another big difference is in the management of edges. In previous releases, each
vertex had two collections: in and out.

The first one contains pointers to the incoming edges, and the second one contains
the pointers to outcoming edges. Many times, edges do not have their own attributes
or properties, so to create and manage a data structure adhoc is a waste of space
and time. So, from now on, when only one edge is present instead of a collection
of edges, and if that edge has no attributes, a link is created. When another edge is
created, automatically OrientDB transforms that link in a collection. From your point
of view, this behavior is completely transparent and you do not have to worry about
it, however it is important that you know how OrientDB manages edges.

Another improvement has been introduced in the management of the edges: you
can extend the E class to create a new edge class (similar to the one in the previous
release), but now when you create an edge using the new class, OrientDB creates
a new property called _<EDGE_CLASS_NAME> (or out_<EDGE_CLASS_NAME). This
means that a vertex can have different edge properties depending on their type.

To alter the database's behavior so that it is still compatible with
Version 1.3.0, one of the way to manage graph objects is by entering
the following commands:

alter database custom useLightweightEdges=false;
alter database custom useClassForEdgeLabel=false;
alter database custom useClassForVertexLabel=false;
alter database custom useVertexFieldsForEdgeLabels=
false;

Let's look at a simple example. Enter the following code in the console:

orientdb-graphed-1.5.0/bin>console

OrientDB console Version 1.5.0 (build @BUILD@) www.orientechnologies.com

Enter help to display all the supported commands.

Installing extensions for the GREMLIN language Version 2.4.0-SNAPSHOT

orientdb>

Appendix

[27]

First of all let's create a graph database and create some vertices as follows:

create database local:../databases/mytestgraph admin admin local
graph;
create vertex set name = 'john';
create vertex set name = 'mike';

You can create a vertex (or a document) by providing its content in
JSON format as follows:

create vertex content { "name" : "John", "surname"
: "Doe" }

Now, let's create an edge type as follows:

create class son extends e;

We can create a relationship as follows:

create edge son from (select from v where name = 'mike') to (select
from v where name = 'john')

The result is as follows:

orientdb> select from v

----+----+----+-------+------

|@RID|name|out_son|in_son

----+----+----+-------+------

0 |#9:1|mike|#9:2 |null

1 |#9:2|john|null |#9:1

----+----+----+-------+------

As you can see, the vertex mike has a link named out_son pointing to the john
vertex, and this one has an in_son link with a reference to the first one.

Now let's create the mother vertex for mike:

create vertex set name = 'mary';

And we link them as follows:

create edge son from (select from v where name = 'mike') to (select
from v where name = 'mary');

Appendix

[28]

The change in the vertices is as follows:

orientdb> select from v

----+----+----+------+-------

|@RID|name|in_son|out_son

----+----+----+------+-------

0 |#9:0|mary|#9:1 |null

1 |#9:1|mike|null |[2]

2 |#9:2|john|#9:1 |null

----+----+----+------+-------

Note how the out_son property of the mike vertex has been changed: from a link, it
became a collection. This is managed completely by OrientDB.

New plocal storage engine
A new storage engine has also recently been introduced: the Paginated Local (plocal)
engine.

It has been completely rewritten from scratch and it now provides a better support
for concurrency and is more durable (it does not use the MMAP). The file structure is
completely different from the local engine and takes up far less space on the storage
device. To create a database using the new engine, from the console, enter the
following command:

create database remote:[server][:port]/<database_name> root <ROOT_
PASSWORD> plocal graph

Remember that you can find your root password within the {ORIENTDB_HOME}/
config/orientdb-server-config.xml file.

To create a local database not using a remote database, from
within the console, the syntax is as follows:

create database plocal:[path/]<database_name>
<user> <password> plocal graph

If you want to embed the OrientDB core in your own Java application, and
you want to use the new plocal engine, you must include in your classpath the
snappy-0.3.jar file located in the {ORIENTDB_HOME}/config/lib directory in
addition to the OrientDB JAR files.

Appendix

[29]

The internal scheduler
OrientDB now comes with an internal scheduler. This means that you can write
your custom JavaScript functions and then schedule them to be executed when you
decide. Version 1.5.0 does not work on plocal databases. For example, let's assume
that we want to store the number of registered users in a class every minute. First of
all, we have to create a class as follows to store the values:

create class users;

Next, let's create a function to store all the users, date, and time. Go to the
OrientDB Web Studio and create the JavaScript function, insertUsers
with the following code:

var qryResult = db.query("select count(*) as count from ouser");
var count = db.getRecord(qryResult[0]).field("count");
var now=new Date();
var command="insert into Users set count=" + count + " , date=" + now.
getTime();
db.command(command);
return;

This function takes the current date and time and the number of users and then
stores this information into the users class. Now we can set the scheduler. In the
console, enter the following code:

insert into oschedule set function=(select from ofunction where
name='insertUsers'), rule='*/1 * * * *', name = "insertUsers",
start=true

Lets check our work:

orientdb> select from oschedule

----+----+--------+-----------+-----------+-----+--------

|@RID|function|rule |name |start|status

----+----+--------+-----------+-----------+-----+--------

0 |#7:0|#6:0 |*/1 * * * *|insertUsers|true |WAITTING

----+----+--------+-----------+-----------+-----+--------

1 item(s) found. Query executed in 0.0050 sec(s).

Appendix

[30]

The special internal class, OSchedule contains the references to the scheduled tasks.
It has the following properties:

•	 function: This is a link to a function stored in the OFunction class
•	 rule: This is a cron-like rule
•	 name: This is the name of the task
•	 status: This is the status of the scheduled task, its values can be: STOPPED,

RUNNING, or WAITTING (currently this is a typo in the OrientDB 1.5.0 code,
it should be WAITING)

•	 start: This is a Boolean value indicating if the task is enabled or disabled

Now we must activate the feature. Open the {$ORIENTDB_HOME }/config/
orientdb-server-config.xml file and into the handlers section, enter the
following code:

<handler class="com.orientechnologies.orient.server.schedule.
OScheduleHandler">
 <parameters>
 <parameter name="databaseName" value="YOUR_DATABASE_NAME_GOES_
HERE"/>
 <parameter name="user" value="admin"/>
 <parameter name="pass" value="admin"/>
 <parameter name="enabled" value="true"/>
 </parameters>
</handler>

Replace the YOUR_DATABASE_NAME_GOES_HERE string with the name of your
database, put the right value into the user and pass parameters, and start the server.

When OrientDB restarts, it prints something as follows:

2013-08-31 23:18:01:562 INFO OrientDB Server v1.5.0 (build @BUILD@) is
starting up... [OServer]
2013-08-31 23:18:01:741 INFO Listening binary connections on
0.0.0.0:2424 (protocol v.17) [OServerNetworkListener]
2013-08-31 23:18:01:746 INFO Listening http connections on
0.0.0.0:2480 (protocol v.10) [OServerNetworkListener]
2013-08-31 23:18:01:779 INFO Installing GREMLIN language v.2.4.0-
SNAPSHOT - graph.pool.max=50 [OGraphServerHandler]
2013-08-31 23:18:01:841 INFO OrientDB Server v1.5.0 is active.
[OServer]
2013-08-31 23:18:01:843 WARN Schedule Timer Started [TimerThread]

Appendix

[31]

The last line states that the scheduler is up and running. After about a minute, you
should see that our task is completed. OrientDB logs the operation showing the
following two lines:

2013-08-31 23:46:00:047 WARN execute : OSchedule
<name:insertUsers,rule:*/1 * * * *,current status:WAITTING,func:insert
Users,start:true> at 2013-08-31
 23:46:00:047 [OScheduler]
2013-08-31 23:46:00:122 WARN Job : OSchedule
<name:insertUsers,rule:*/1 * * * *,current status:RUNNING,func:insertU
sers,start:true> Finished! [OSchedu
ler]

You can execute a select statement in the Users class to see how many users are logged.

The UML class diagram
The OrientDB Web Studio now has a UML class diagram viewer. It allows you
to see the database schema from a class diagram point of view. Assuming that
you are running the 1.5.0 Graphed Edition, you should be able to log in to the
TinkerPop database. In the main page, there is the link for a UML class diagram.
Go to the link. If you are connected to the Internet, you should see the class
diagram of the TinkerPop database.

Migrating from 1.3.0 databases
If you have to migrate from OrientDB 1.3.0 to the new 1.5.0 release, the best way to
do so is to perform an export from Version 1.3.0, and then an import into the new
server. OrientDB manages all the necessary stuff to perform the conversion.

In the 1.3.0 console, enter the following code:

OrientDB console v.1.3.0 - www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> connect local:databases/mydb admin admin
Connecting to database [local:../databases/mydb] with user 'admin'...
OK

orientdb> export database /mydb_export.json.gz
Exporting current database to: database /mydb_export.json.gz...
.
.
.
Database export completed in 534ms

Appendix

[32]

Now from the 1.5.0 console, enter the following code:

OrientDB console v.1.5.0 (build @BUILD@) www.orientechnologies.com

Enter help to display all the supported commands.
Installing extensions for the GREMLIN language v.2.4.0-SNAPSHOT
orientdb> create database local:databases/newmydb admin admin local
Creating database [local:databases/newmydb] using the storage type
[local]...
Database created successfully.

Current database is: local:databases/newmydb
orientdb> import database /mydb-export.json.gz
.
.
.
Database import completed in 862 ms
orientdb>

The complete migration guide can be found at the OrientDB official wiki page
located at https://github.com/orientechnologies/orientdb/wiki/Migration-
from-1.3.x-to-1.4.x.

It is about Version 1.4.0, but it is also applicable to Version 1.5.0.

Summary
In this chapter, we have seen the main differences between Versions 1.3.0 and 1.5.0.
We have seen how the graph database engine has been optimized to better manage
the edges, to be more durable in case of a system crash, and to occupy less space on
storage devices. We have also seen some new features such as the internal scheduler
and the UML class diagram viewer. Finally, we have seen how to migrate a database
between two versions.

