
Online Chapter – Kernel
Workspace Setup

This is an extension of Chapter 1, Linux Kernel Programming - A Quick Introduction, that has been
published online. This chapter will teach you how exactly to setup the kernel workspace environment
and get started.

We will install a recent Linux distribution, as a Virtual Machine (VM), and set it up to include all the
required software packages. We will also clone this book’s code repository on GitHub and learn about
a few useful projects that will help along this journey.

Right at the outset, something I would like to emphasize is this: the best way to learn something is to do
so empirically, hands-on – not taking anyone’s word on anything at all but trying it out and experiencing
it for yourself. Hence, this book gives you many hands-on experiments and kernel code examples that
you can, and indeed must, try out yourself; this will greatly aid in your making real progress, learning
deeply and understanding various aspects of Linux kernel and driver development.

Here’s an indication of what you can expect to do as you progress through the book:

• Set up a working Linux kernel workspace on your system (as either a VM or a native system)
• Build the Linux kernel from source (for both the x86_64 as well as an ARM-based system)
• Understand the modern Linux Kernel Module (LKM) framework and leverage it to write kernel

modules
• Write kernel modules (and a few user-space programs) that do various things (for example,

iterate over all alive processes/threads, display user and kernel address-space details, dynam-
ically manage kernel memory (allocating and freeing memory in various ways), and prod the
kernel’s out-of-memory killer, while also learning about CPU scheduling and cgroups through
code examples)

• Understand the complexities inherent in working with concurrent (parallelized) hardware
and software systems (like Linux) and learn when and how to synchronize your kernel code
through various powerful technologies, both locking and lock-free.

So, always remember:

Be empirical! Also, be bold, be daring, and try things out!

Right, let’s begin!

This chapter will take you through the following topics, which will help set up your working environ-
ment:

• Running Linux as a guest VM

Kernel Workspace Setup2

• Installing an x86_64 Linux guest
• Additional useful projects

Technical requirements
You will need a modern – and preferably powerful – desktop PC or laptop. Ubuntu Desktop specifies

“recommended minimum system requirements” for the installation and usage of the distribution here:
https://help.ubuntu.com/community/Installation/SystemRequirements. I’d suggest you go with
a system well beyond the minimum recommendation, as powerful a system as you can afford to use.
This is because performing tasks such as building a Linux kernel from source is a very memory- and
CPU-intensive process. It should be pretty obvious – the more RAM, CPU power, and disk space the
host system has, the better!

Like any seasoned kernel developer, I would say that working on a native Linux system is best. However,
for the purposes of this book, we cannot assume that you will always have a dedicated native Linux box
available to you. So, we shall assume that you are working on a Linux guest. Working within a guest
VM also adds an additional layer of isolation and thus safety. Of course, the downside is performance –
working on a high-spec native Linux box can be up to twice as fast when compared to working on a VM!

Cloning our code repository: The complete source code for this book is freely available on GitHub
at https://github.com/PacktPublishing/Linux-Kernel-Programming_2E. You can work on it by
cloning the git tree, like so:

git clone https://github.com/PacktPublishing/Linux-Kernel-Programming_2E

The source code is organized chapter-wise. Each chapter is represented as a directory – for example,
ch1/ has the source code for this chapter. The root of the source tree has some code that is common
to all chapters, such as the source files convenient.h and klib.c, as well as others.

For efficient code browsing, I would strongly recommend that you always index the code base(s) with
ctags and/or cscope. For example, to set up the ctags index on a source tree, just cd to the root of the
source tree and type ctags -R. (If you haven’t already, please invest the time to learn code-browsing
tools like cscope and ctags.)

Running Linux as a guest VM
As discussed previously, a practical and often convenient alternative to using a native Linux system
is to install and use the Linux distribution as a guest OS on a VM.

Unless noted otherwise, the code output we show in the book is the output as seen on an
x86_64 Ubuntu 22.04 LTS guest VM (running under Oracle VirtualBox 7.0). You should
realize that due to (usually minor) distribution differences – and even minor differences
within the same distributions but differing versions – the output shown in the book may
not perfectly match what you see on your Linux system.

https://help.ubuntu.com/community/Installation/SystemRequirements
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E

Online Chapter 3

Selecting a Linux distro and kernel
It’s key that you install a recent and well-supported Linux distribution, along with a recent long-term
Linux kernel. In software, a Long-Term Stable (LTS) version, helps insulate you from constant main-
tenance and upgrades, and keeps your environment safe; the organization or people responsible for
maintaining the LTS version will do so, keeping the product maintained and applying critical and
required security and bug fixes, usually for a long-ish period. The scenario with respect to the LTS
Linux kernel is mentioned shortly.

Very briefly, for this book, here’s what we’ll select:

• Linux distribution (or distro): Ubuntu 22.04 LTS (Jammy Jellyfish); free security and mainte-
nance updates guaranteed until April 2027. EOL is April 2032.

• Linux kernel: The latest LTS Linux kernel version, as of the time of writing, 6.1.y; End of Life
(EOL) is December 2026 (the kernel version nomenclature is explained in detail in Chapter 2,
Building the 6.x Linux Kernel from Source - Part 1).

• Hypervisor for the VM: Oracle VirtualBox 7.0.x (runs on the host system).

Our reasoning is simple: all of these are Open-Source Software (OSS) with, as of the time of writing,
sufficiently long EOL dates, ensuring their continued support and viability for a long while.

You’ll of course get all the details as we go along; for the Ubuntu VM installation details, the Installing
an x86_64 Linux guest and Setting up OSBoxes Ubuntu 22.04 as a guest OS sections cover it. The Linux
kernel versions, what exactly the nomenclature entails, and actually building a custom kernel are
covered in depth in the following two chapters; relax, we’ll get there.

Of course, running Linux on a native system has definite performance advantages. For the purpose of
this book, though, we shan’t assume you have a dedicated spare native Linux system, so we’ll go with
running Linux as a VM; it’s also safer, helping avoid unpleasant data loss or other surprises. The fact
is when working at the level of the kernel, abruptly crashing the system (and the data loss risks that
arise thereof) is actually a commonplace occurrence.

For the hypervisor, I recommend using Oracle VirtualBox 7.x (or the latest stable version) or other
virtualization software, such as VMware Workstation.

It’s not just when working on kernel stuff that VMs are useful. In my personal experience,
I’ve totaled a few Linux systems even when working on apps – all because of unfortunate
(and quite silly) bugs! With a native system, this entails the painful re-installation and
setup of the entire workspace, whereas with a VM, all you need to do is reinstall it (much
quicker, typically) or work from an existing snapshot (even better). This is much easier,
with less tension and headaches when things go wrong (remember Murphy’s law? It does
apply…). Of course, it’s all a trade-off; with a native system, the performance can often be
twice as high compared with a VM.

Kernel Workspace Setup4

The host system – the one where the hypervisor runs – should be a supported host: either MS Windows
10 or later (of course, even Windows 7 will work), a recent Linux distribution (for example, Ubuntu
or Fedora), or macOS.

More choices
Ubuntu 22.04 LTS Desktop is the version of choice for this book. The two primary reasons for this are
straightforward:

• Ubuntu Linux is one of the, if not the, most popular Linux development workstation environ-
ments in industry use today.

• We cannot always, due to a lack of space and clarity, show the code/build output of multiple
environments in this book. Hence, we have typically chosen to show the output as seen on the
x86_64 Ubuntu 22.04 LTS Desktop.

Some other Linux distributions and/or hardware boards (along with their distro) that can also be
considered include the following:

• Fedora Workstation: Fedora is a very well-known FOSS Linux distribution as well. You can
think of it as being a kind of test-bed for projects and code that will eventually land within Red
Hat’s enterprise products. Download it from https://getfedora.org/ (download the Fedora
Workstation image; we do, at times, run some of this book’s kernel code on x86_64 Fedora 38
and 39 VMs or native systems).

• Raspberry Pi (ARM/ARM64) as a target: It’s really best to refer to the official documentation
to set up your Raspberry Pi (Raspberry Pi documentation: https://www.raspberrypi.org/
documentation/). It’s perhaps worth noting that Raspberry Pi kits are widely available that
come completely pre-installed and with some hardware accessories as well. We cover more
on using the Raspberry Pi as a target in a later section.

• BeagleBone Black (aka BBB; ARM) as a target: The BBB, like the Raspberry Pi, is an extremely
popular embedded ARM Single-Board Computer (SBC) for hobbyists and pros. You can get
started here: https://beagleboard.org/black. The System Reference Manual for the BBB can
be found here: https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf.

Both of these hypervisors – Oracle VirtualBox and VMware Workstation – are freely avail-
able. It’s just that the code for this book has been tested on VirtualBox 7.0.x. Oracle Virtu-
alBox is considered OSS and is licensed under the GPL v2 (the same as the Linux kernel).
You can download it from https://www.virtualbox.org/wiki/Downloads. Its docu-
mentation can be found here: https://www.virtualbox.org/wiki/Documentation.

Ubuntu 20.04 – or even 18.04 LTS – Desktop is a good choice too (it has Long-Term Support
(LTS) as well), and most things should work. To download it, visit https://www.ubuntu.
com/download/desktop. But it is definitely older... (and this book’s code hasn’t been tested
on them; a few issues, especially wrt kernel versions, are likely to show up).

https://getfedora.org/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://beagleboard.org/black
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Documentation
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

Online Chapter 5

Though we typically don’t present examples running on the BBB, nevertheless, it’s a valid em-
bedded Linux system that, once properly set up, you can run the majority of this book’s code on.

• Of course, advanced readers will realize that the Linux system to use is really up to you. Run-
ning an as-light-as-possible custom Linux system on a QEMU (emulated) standard PC, using
Vagrant, and so on are valid choices as well.

Before we conclude our discussion on selecting our software distribution for the book, here are a few
more points to note:

• These distributions are, in their default form, FOSS and non-proprietary, and free to use as
an end user.

• Though our aim is to be Linux distribution-neutral, the book’s code has only been tested on
an x86_64 guest running Ubuntu 22.04 LTS and lightly tested on the ARM-based (both ARM-32
and ARM-64) Raspberry Pi boards typically running a version similar to the Debian GNU/Linux
OS. (On occasion, we also run our code on an (x86_64) Fedora 38/39 or Ubuntu 23.04 system.)

• We will, as much as is possible, use a recent (as of the time of writing) stable LTS Linux kernel
version 6.1 for our custom kernel builds and code runs. Being a long-term kernel with an EOL
date of December 2026, the 6.1 kernel series is an excellent choice to run on and learn with.

Now that we have chosen our Linux distribution, and/or hardware boards and VMs, it’s time we install
the guest along with setting up a user account and essential software packages.

So, let’s get started with some basic information on installing our Linux guest (for the impatient,
something to point out – an easier and quicker way to get started is to simply use pre-built Linux VM
images! We show you how in the Using pre-built Linux VM images section).

Installing an x86_64 Linux guest
Here, I won’t delve into the minutiae of installing Linux as a guest on Oracle VirtualBox, the reason being
that this installation is not directly related to Linux kernel development. There are many ways to set
up a Linux VM; we really don’t want to get into the details and the pros and cons of each of them here.

It is interesting to know that, as of the time of writing, the 6.1 LTS kernels will indeed have
a long lifespan, from December 2022 right up to (as of now) December 2026! This is good
news: this book’s content thus remains current and valid for years to come! Even better,
the Super LTS (SLTS) 6.1 kernel, maintained by the Civil Infrastructure Platform (CIP),
will be maintained right up to August 2033! (You can find details on upcoming changes in
the LTS model in the following chapter.)

 It’s important to realize that, for maximized security (with the latest defenses and fixes),
you must strive to run the most recent stable long-term kernel possible for your project
or product, and apply all updates, especially the security-related ones, as soon as they
become available.

Kernel Workspace Setup6

But if you are not familiar with this, don’t worry. For your convenience, here are some excellent re-
sources that will help you out:

• From Ubuntu: How to run an Ubuntu Desktop virtual machine using VirtualBox 7: https://ubuntu.
com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox

• A clearly written tutorial entitled Install Linux Inside Windows Using VirtualBox by Abhishek
Prakash (It’s FOSS!, August 2019): https://itsfoss.com/install-linux-in-virtualbox/

• An alternate, similarly excellent resource is Install Ubuntu on Oracle VirtualBox: https://brb.
nci.nih.gov/seqtools/installUbuntu.html

Also, you can look up useful resources for installing a Linux guest on VirtualBox in the Further reading
section for this chapter.

Nevertheless, while you install your x86_64 Linux VM, it’s important to keep the following things in
mind:

• Turn on your x86 system’s virtualization extension support (within the system BIOS or UEFI).
• Allocate sufficient space to the guest disk; for most desktop/laptop systems, allocating 1 GB of

RAM and two (or more) CPUs to the guest VM should be sufficient. However, when allocating
space for the guest’s disk, please be generous. Instead of the usual/default smaller amounts
suggested, I strongly recommend you make it 50 GB or even more. Of course, this implies that
the host system has more disk space than this available! Further, you can (preferably) specify
this amount to be dynamically allocated or allocated on-demand. The hypervisor will “grow” the
virtual disk optimally, not giving it the entire space to begin with. Allocating more disk space,
as well as RAM, to the VM is good for its performance; furthermore, it allows one to increase
disk/memory usage without having to worry that it will run out anytime soon. (A quick couple of
tips: with respect to performance and storage, in VirtualBox, go to the Settings dialog | Storage |
Controller and tick the Use Host I/O Cache box. Next, using the hypervisor’s checkpoint-restore
(or snapshots) features can be very useful but can result in a lot of (host) disk space getting
used up; attaching a high-capacity external SSD for such purposes can certainly help).

Right, now let’s get on with how you can more easily install a pre-built Linux as a guest.

Using pre-built Linux VM images
The OSBoxes (OSB) project allows you to freely download and use pre-built VirtualBox (as well as
VMware) images for popular Linux distributions. See their site here: https://www.osboxes.org/
virtualbox-images/.

In our case, we can download a prebuilt x86_64 Ubuntu 22.04 (as well as others) Linux image here:
https://www.osboxes.org/ubuntu/. It comes with the VirtualBox Guest Additions (see the following
info box for details) pre-installed!

https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox
https://itsfoss.com/install-linux-in-virtualbox/
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://www.osboxes.org/virtualbox-images/
https://www.osboxes.org/virtualbox-images/
https://www.osboxes.org/ubuntu/

Online Chapter 7

The default username/password is osboxes/osboxes.org.

In this book, I’ll use the OSBoxes prebuilt Ubuntu 22.04 LTS as my primary VM. Its main advantage
is that once downloaded, you’re essentially good to go! Further, it comes with the VirtualBox Guest
Additions virtual CD image.

There are a couple of downsides to OSB though:

• For a desktop-based development system, the boot partition is relatively small (about 250 MB);
building many kernel images tends to fill this up quickly (you’ll then have to delete older kernel
images and their related artifacts from the boot partition mount point, typically /boot. This
dialog (Figure 14.1) that I once saw when updating the system is typical of the issue; follow
its advice:

Figure 14.1: A dialog popup showing that /boot is short on space! Follow its advice

• The default OSBoxes image is rather large; the 7-Zip-compressed image – the one to download
– is about 2.6 GB in size; when uncompressed, it expands to approximately 8.6 GB (further, it’s
set up so that it can grow – storage is allocated dynamically, which is good).

Setting up OSBoxes Ubuntu 22.04 as a guest OS
Once you’ve downloaded (and uncompressed) the OSB Ubuntu 22.04 image file (it’s typically named
Ubuntu 22.04 (64bit).7z, or more recently, just 64bit.7z), simply create a new guest OS within
VirtualBox (by clicking on the New button), tweak it’s Settings as required and desired, and try it out.

What the heck are VirtualBox Guest Additions?

For best performance, it’s important to install the Oracle VirtualBox Guest Additions
as well within the guest VM. This is essentially para-virtualization accelerator software,
which greatly helps with optimizing performance (especially regarding disk/network I/O,
graphics, as well as providing USB3 support).

Kernel Workspace Setup8

We’ve shown an example of doing this (refer to Figure 14.2), running the VirtualBox creation in Expert
Mode:

Figure 14.2: Creating and setting up a new VirtualBox guest in Expert Mode

Especially when working with multiple images in VirtualBox, it’s possible you’ll get a well-
known error, something along the lines of … Cannot register the hard disk <foo> <UUID>
because a hard disk <bar> with <UUID> already exists.... To fix this, you’ll need to assign a
unique (internal) UUID (universal unique identifier) to the “new” virtual disk like this:

vboxmanage internalcommands sethduuid </path/to/new/virtual/disk.
vdi>

See details here: https://poweradm.com/virtualbox-cannot-register-hard-disk-
already-exists/.

https://poweradm.com/virtualbox-cannot-register-hard-disk-already-exists/
https://poweradm.com/virtualbox-cannot-register-hard-disk-already-exists/

Online Chapter 9

Okay, once you’ve ensured your new guest VM boots and it basically works, the tweaks we’ll need to
make to it are as follows:

1. Install the VirtualBox Guest Additions.
2. Set up a new user account named c2kp.
3. Install other required software packages.

Let’s perform these steps! (Though these steps are shown with using the OSB Ubuntu 22.04 LTS, they
should work for any Debian/Ubuntu based Linux guest.)

Step 1. Install the VirtualBox Guest Additions
1. Start up your OSB Ubuntu 22.04 VM (from within the VirtualBox app) on your host system.
2. Log in to your Linux guest as the user osboxes (recall that the default password is osboxes.

org) within the (default) graphical environment.
3. A prerequisite to installing the Guest Additions is, we must first install some minimal pack-

ages; let’s do so. In the Terminal app, type (it’s possible you’ll have to wait until an ongoing
automated/unattended upgrade completes):

sudo apt update
sudo apt upgrade

4. Reboot the guest.
5. After logging in (again as the osboxes user), next ensure that these packages are installed:

sudo apt install -y gcc make perl git build-essential dkms linux-headers-
$(uname -r) ssh

(This command should be typed on one line. The -y option switch has apt assume a yes answer
to all prompts; careful though, this could be dangerous in other circumstances.)

6. From VirtualBox’s menu, select Devices | Insert Guest Additions CD image.... Now a “virtual”
CD shows up. Note the pathname of its mount point (you can use the df command in the Ter-
minal app to do so); on my system, it happens to be /media/osboxes/Vbox_Gas_7.0.4.

7. Now, within the Terminal application, do this:

sudo /media/osboxes/Vbox_Gas_7.0.4/VBoxLinuxAdditions.run
[...]

8. Follow the onscreen prompts. The VirtualBox Guest Additions (mostly kernel modules) are
installed via this script; all you have to do once it’s done is reboot the VM.

Tip: Enabling the bidirectional clipboard (between host and guest – very use-
ful). From the VirtualBox menu, select Devices | Shared Clipboard | Bidirec-
tional.

Kernel Workspace Setup10

9. On Oracle VirtualBox, to ensure that you have access to any shared folders you might have
set up, you need to set the guest account to belong to the vboxsf group; you can do so like
this (once done, you’ll need to log in again, or perhaps even reboot, to have this take effect):

sudo usermod -G vboxsf -a ${USER}

Good going, let’s move on to the next step.

Step 2. Set up a new user account named c2kp
1. Okay, I’ll assume you’re logged in to the OSBoxes guest (as the user osboxes). Now setting up

a new user account via the CLI is easy:

sudo useradd -m c2kp -s /bin/bash
sudo passwd c2kp

Look up the man page on useradd to understand the options passed.

This creates a new account named c2kp, along with the (skeleton, mostly empty) home direc-
tory, and sets up the password as well (please do provide a secure password). It automatically
creates a group of the same name as well, which will be your primary group.

On a Debian-based distro like this one, as the default account, osboxes, belongs to the adm and
sudo groups (and /etc/sudoers allows it), you can exploit using the sudo command and thus
run stuff as root (superuser); you simply have to enter your own password when prompted.
Note, of course, that on production systems, stuff like this raises security concerns and will
typically be constrained if not altogether disabled.

2. So, for our c2kp account to run stuff as root (to use sudo), which is important for us to be able
to do, we need to make c2kp a member of the adm and sudo groups:

sudo usermod -a -G adm,sudo c2kp

Let’s verify it worked:

$ grep -E -w "adm|sudo" /etc/group
adm:x:4:syslog,osboxes,c2kp
sudo:x:27:osboxes,c2kp

Yes indeed! c2kp is now a member of the adm and sudo groups.

Wait, why on earth is our user account named c2kp?

Ah, thought you’d never ask. In the world of recreational running, there’s a really well-
known program to get people off their behinds; it’s named Couch to 5k, abbreviated as C25K
(http://www.c25k.com/). In a similar vein, we’re using Couch to Kernel Programmer, or
c2kp! (Hey, it’s Linux, we prefer to keep account names in lowercase; also, take the name
with a pinch of salt – I know you’re smart!)

http://www.c25k.com/

Online Chapter 11

Great; log out and, from now onward, I’d suggest you always log in to the guest as the user c2kp. A
screenshot of the VirtualBox About app in the foreground and our OSBoxes guest terminal window
in the background follows:

Figure 14.3: Screenshot of the VirtualBox app and our freshly installed OSBoxes Ubuntu guest

You can see we’re logged in as user c2kp. As my host system (it’s also running Linux!) is quite powerful,
I assign four CPU cores and 2 GB of RAM to the guest.

Let’s now move on to a key step: actually installing the required software components on our Linux
guest system so that, in the coming chapters, you can learn and write Linux kernel code on the system!

Step 3. Install required software packages
The packages that are installed by default when you use a typical Linux desktop distribution, such
as any recent Ubuntu, Debian, CentOS, or Fedora Linux system, will likely include the minimal set
required by a systems programmer: the native toolchain, which includes the GCC compiler along with
headers, and the make utility/packages.

Kernel Workspace Setup12

In this book, we are (also) going to learn how to write kernel-space code using an x86_64 VM and/or
a target system running on a foreign processor (ARM32 and/or AArch64 being the typical cases). To
effectively develop kernel code on these systems, we will need to install additional software packages.

Right, first of all, we’ll assume you’re running an x86_64 Ubuntu VM on VirtualBox with the Guest
Additions installed. This is indeed the case when using the OSBoxes prebuilt Ubuntu image. (Just in
case you still need to install them, no problem; refer to the section Step 1. Install the VirtualBox Guest
Additions. Also, this tutorial has you covered: How to Install VirtualBox Guest Additions in Ubuntu:
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/.)

Next, let’s cover the installation of some required packages.

To install the packages (manually), take the following steps:

1. Within the Ubuntu VM, first do the following:

sudo apt update

What is the toolchain and native toolchain?

To develop software, we (obviously) require a compiler (which compiles our source code
to assembly and machine code so that it can execute on the machine). The venerable GCC
compiler is typically the one we use (although Clang is becoming very popular!). But hang
on, that’s just the surface-level view; it’s not just the compiler – looking deeper, there are
many other tools required. They include the make utility, the GCC compiler, the standard
(GNU) C library (glibc), the binutils package (the linker and assembler), the bison and
flex parsers/lexical analyzers, the GDB debugger, and the GNU autotools suite. All these
tools together make up what we call the toolchain, which is required for development.
Furthermore, the toolchain that’s installed by default on your typical Linux distro is called
the native toolchain (it builds software from source code on that system for that same system
type). On the other hand, we also have toolchains that build software on a host system
but targeted to run on another (foreign) CPU architecture (like building on x86_64 for an
ARM32); these are termed cross-toolchains (we shall come across them later in the book).

This book comes with a code repo (on GitHub) here: https://github.com/
PacktPublishing/Linux-Kernel-Programming_2E. We expect you to clone and use it
as you progress through the book.

Hey, there’s an easier way. I’ve provided a Bash script in the book’s GitHub repo that
will install all required packages for Ubuntu Linux; it can be found here: https://
github.com/PacktPublishing/Linux-Kernel-Programming_2E/blob/main/ch1/
pkg_install4ubuntu_lkp.sh. Do ensure you clone this book’s code repository and then
you can run it. Using our GitHub script also has the significant advantage that it will be
kept updated...

https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E/blob/main/ch1/pkg_install4ubuntu_lkp.sh
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E/blob/main/ch1/pkg_install4ubuntu_lkp.sh
https://github.com/PacktPublishing/Linux-Kernel-Programming_2E/blob/main/ch1/pkg_install4ubuntu_lkp.sh

Online Chapter 13

2. Now, to install the required packages for building the Linux kernel, run the following com-
mand on a single line:

sudo apt install -y \
 bison build-essential flex libncurses5-dev ncurses-dev \
libelf-dev libssl-dev tar util-linux xz-utils

3. To install the packages required for work we’ll do in other parts of this book, run the following
command:

sudo apt install -y \
 bc bpfcc-tools bsdextrautils \
 clang cppcheck cscope curl exuberant-ctags \
 fakeroot flawfinder \
 gnome-system-monitor gnuplot hwloc indent \
 libnuma-dev linux-headers-$(uname -r) linux-tools-$(uname -r) \
 man-db net-tools numactl openjdk-22-jdk openssh-server \
 perf-tools-unstable psmisc python3-distutils \
 rt-tests smem sparse stress sysfsutils \
 tldr-py trace-cmd tree tuna virt-what

Recall that the installation of gcc, make, and perl is done first (see the Step 1. Install the VirtualBox Guest
Additions section) so that the Oracle VirtualBox Guest Additions can be properly installed straight after.

The disk space taken up by installing all these packages (at least on my VM) is in the region of 2.7 GB.

Do note that the book’s GitHub repo does evolve; do a git pull occasionally to ensure you have the
latest version of the code.

Installing QEMU and a cross-toolchain
One way to try things on an ARM machine is to actually do so on a physical ARM[64]-based SBC; for
example, the Raspberry Pi is a very popular choice. In this case, the typical development workflow is
to first build the ARM code on your x86_64 host system. But to do so, we need to install a cross-tool-
chain – a set of tools allowing you to build software on one host CPU such that it executes on a different
(foreign) target CPU. An x86_64 host building programs for an ARM target is a very common case, and
indeed is our use case here. Details on installing the cross-compiler follow shortly.

Often, an alternate way to just trying things out is to have an ARM/Linux system emulated – this al-
leviates the need for hardware! To do so, we recommend using the superb QEMU (Quick Emulator)
project (https://www.qemu.org/).

This book, at times, mentions that running a program on another CPU architecture –
typically AArch32 (ARM32) or AArch64 – might be a useful exercise. If you want to try
(interesting!) stuff like this, I urge you to do so! Please read on; otherwise, feel free to skip
ahead to the Additional useful projects section.

https://www.qemu.org/

Kernel Workspace Setup14

To install the required QEMU packages, do the following (this takes up close to half a gigabyte of disk
space on Ubuntu):

• For installation on Ubuntu, use the following:

sudo apt install qemu-system-arm

• For installation on Fedora, use the following:

sudo dnf install qemu-system-arm-<version#>

To get the version number on Fedora, just type the preceding command, and after typing the required
package name (here, qemu-system-arm-), press the Tab key twice. It will auto-complete, providing a
list of choices. Choose the latest version, and press Enter.

Installing a cross-compiler
If you intend to write a C (or C++) program that is compiled on a certain host system but must execute
on another (foreign) target system, then you need to compile it with what’s known as a cross-compiler
or cross-toolchain. For example, in our use case, we want to work – develop code – on an x86_64 host
machine. The host can even be an x86_64 guest system (that’s fine), but the code must run on, say, an
AArch32 (ARM32) target.

We shan’t dig further into the specifics of installing a specific cross-toolchain here and now, as we
practically require this – and explain it in depth – in a later chapter (Chapter 3, Building the 6.x Linux
Kernel from Source – Part 2, in the Step 2 – installing a cross-toolchain section).

Another interesting thing to mention: you can use prebuilt (Docker) containers as cross-compile envi-
ronments for multiple targets; it helps with guaranteeing that all teams on the project work with the
identical cross-compile environment. Check out this page for more details (to learn and try): https://
github.com/dockcross/dockcross.

A reasonable question you might have at this point is, why are we setting up a cross-toolchain in the
first place? Although we aren’t making use of it just now (after all, this is the “setup the workspace”
material), we definitely shall later, in Chapters 3 and 5, and on a few other occasions, where you’ll be
configuring and cross-compiling a Linux kernel – and kernel modules – for the ARM[64] processor!
Relax, we’ll get there and dig into the details then.

Installing and using a cross-toolchain might require some reading up for newbie users. You can visit
the Further reading section where I have placed a few useful links that will surely be of help.

A few remaining tips when running the VM
Sometimes, when the overhead of using the X Window System (or Wayland) GUI (for graphical display)
is too high, especially on a guest machine, it’s preferable to simply work in console mode. You can do
so by appending 3 (the run level) to the kernel command line via the bootloader. However, working
in console mode within VirtualBox may not be that pleasant an experience (for one, the clipboard is
unavailable; two, the screen size and fonts are less than desirable).

https://github.com/dockcross/dockcross
https://github.com/dockcross/dockcross

Online Chapter 15

Thus, doing a remote login (via ssh, putty, or equivalent) into the VM from the host system can be
a great way to work (one that I use most of the time). This usually entails adding a “bridged mode”
network adapter to the guest (shut down the guest, then in Oracle Virtualbox go to Settings | Network,
and add it).

Next, remember to update the VM regularly and when prompted; this is an essential security require-
ment. (Otherwise, outdated vulnerable software continues to run on your system, making it a juicy
target for malicious hackers who’re always on the lookout for just this!) You can do so manually by
using the following:

sudo /usr/bin/update-manager

Finally, to be safe, please do not keep any important data on the guest VM. We will be working on
kernel development. Crashing the guest kernel can be pretty commonplace. While this usually does
not cause data loss, you can never tell! To be safe, always back up any important data.

Experimenting with the Raspberry Pi
The Raspberry Pi is a very popular credit card-sized (or smaller, as with the Raspberry Pi Zero boards)
SBC, much like a small-factor PC that has USB ports, a microSD card, HDMI, audio, Ethernet, GPIO,
and more. It’s used for learning, by hobbyists, prototyping, and several real-world products as well.
The System on Chip (SoC) that powers it is from Broadcom, and in it is an ARM core or cluster of cores.

Though not mandatory, in this book we strive to also test and run our code on some of these embed-
ded systems (the Raspberry Pi Zero W and the Raspberry Pi 4 Model B boards). Running your code on
different target architectures is always a good eye-opener to possible defects (bugs), and helps with
testing and learning. I encourage you to do the same.

So what does the Raspberry Pi SBC look like? Figure 14.4 shows you a typical specimen, a Raspberry
Pi 4 Model B:

Figure 14.4: The Raspberry Pi 4 Model B with a USB-to-RS232 TTL UART serial adapter cable attached
to its GPIO pins

A tip: You can exploit VirtualBox’s “Snapshots” feature, allowing you to keep, in effect,
a known working point, and be able to restore it on demand.

Kernel Workspace Setup16

You can work on the Raspberry Pi target either using a digital monitor/TV via HDMI as the output device
and a traditional keyboard/mouse over its USB ports or, more commonly for developers, over a remote
shell via ssh. The SSH approach, though, does not cut it in all circumstances. Having a serial console
on the Raspberry Pi helps, especially when doing stuff like kernel (or driver) bring-up and debugging.

To set up your Raspberry Pi, please refer to the official documentation: https://www.raspberrypi.
org/documentation/. As of the time of writing, my Raspberry Pi system runs the “official” Debian
Linux for Raspberry Pi; it’s called the Raspberry Pi OS (it used to be called Raspbian) and sports a very
recent 6.1-based Linux kernel. (Later, in the following two chapters, you’ll not only learn how to build
your own custom Linux kernel, but also one specifically for the Raspberry Pi!)

On the console (or a Terminal window) of the Raspberry Pi, to look up version details, we run the
following commands:

rpi $ lsb_release -a
No LSB modules are available.
Distributor ID: Debian
Description: Debian GNU/Linux 11 (bullseye)
Release: 11
Codename: bullseye
rpi $ uname –a
Linux rpi 6.1.21-v8+ #1642 SMP PREEMPT Mon Apr 3 17:24:16 BST 2023 aarch64
GNU/Linux
rpi $

Also, of course, there is no reason to confine yourself to the Raspberry Pi family; there are several
other excellent prototyping/evaluation boards available. One that springs to mind is the popular
BeagleBone Black board.

I recommend that you check out the following article, which will help you set up a USB-to-se-
rial connection, thus getting a console login to the Raspberry Pi from a PC/laptop: WORK-
ING ON THE CONSOLE WITH THE RASPBERRY PI, kaiwanTECH: https://kaiwantech.
wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/.

Of course, my Linux Kernel Debugging book (Packt Publishing, August 2022), covers kernel
debugging tools and techniques in depth; do check it out.

Quick tip

There are several interesting commands to query hardware/software info; try hostnamectl,
ls{cpu|pci|usb}. Also, specific to x86, try hwinfo, lshw, and specific to the Raspberry
Pi OS, the raspinfo commands, for even more details.

https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/

Online Chapter 17

By now, I expect that you have set up Linux as a guest machine (or are using a native “test” Linux
box) and have cloned the book’s GitHub code repository. So far, we have covered some information
regarding setting up Linux as a guest (as well as optionally using boards such as the Raspberry Pi or
the BeagleBone).

If you do face issues with setup, or later with code (of course, it happens to the best of us), remember,
most answers are only a “google” away! Still, there are times when a well-thought-out question posted
to relevant forums fetches a better human-generated answer. And then these days there are the gen-
erative AI LLMs, of course… again, YMMV (Your Mileage May Vary). As an additional help, we (the
publisher and I) do try and support folks who write in their issues, using the book’s GitHub repo as
the main means of doing so (raise an issue, or PR (pull request), or simply write in).

So, congratulations! This completes the software setup. Now, let’s check out a few additional and useful
projects to complete this chapter. It’s certainly recommended that you read through this section as well.

Additional useful projects
This section brings you details of some additional miscellaneous projects that you might find very
useful indeed. In a few appropriate places in this book, we refer to or directly make use of some of
them, thus making them important to understand.

Let’s get started with the well-known and important Linux man pages project.

Using the Linux man pages
You must have noticed the convention followed in most Linux/Unix literature:

• The suffixing of user commands with (1) – for example, gcc(1) or gcc.1
• System calls with (2) – for example, fork(2) or fork().2
• Library APIs with (3) – for example, pthread_create(3) or pthread_create().3

The number in parentheses (or after the period) denotes the section of the manual (the man pages)
that the command/API in question belongs to. A quick check with man(1), via the man man command
(that’s why we love Unix/Linux!), reveals the sections of the Unix/Linux manual:

$ man man
[...]

In fact, for professional development and product work, the Raspberry Pi is perhaps
not the best choice, for several reasons... a bit of googling will help you understand this.
Having said that, as a learning and prototyping environment, it’s hard to beat, with the
strong community (and tech hobbyist) support it enjoys.

Several modern choices of microprocessors for embedded Linux (and much more) are
curated, discussed, and contrasted in this excellent in-depth article: SO YOU WANT TO
BUILD AN EMBEDDED LINUX SYSTEM?, Jay Carlson, October 2020: https://jaycarlson.
net/embedded-linux/; do check it out.

https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/

Kernel Workspace Setup18

A section, if provided, will direct man to look only in that section of the
manual. [...]

 The table below shows the section numbers of the manual followed by the
types of pages they contain.

 1 Executable programs or shell commands
 2 System calls (functions provided by the kernel)
 3 Library calls (functions within program libraries)
 4 Special files (usually found in /dev)
 5 File formats and conventions eg /etc/passwd
 6 Games
 7 Miscellaneous (including macro packages and conventions), e.g.
man(7), groff(7)
 8 System administration commands (usually only for root)
 9 Kernel routines [Non standard]
[...]

So, for example, to look up the man page on the stat(2) system call, you would use the following:

man 2 stat # (or: man stat.2)

At times though, the man pages are simply too detailed to warrant reading through when a quick answer
is all that’s required. Enter the tldr project – read on!

The tldr variant
While we’re discussing man pages, a common annoyance is that the man page on a command is, at times,
simply too large. Take the ps(1) utility as an example. It has a really large man page as, of course, it has
a huge number of option switches. Wouldn’t it be nice, though, to have a simplified and summarized

“common usage” page for ps? This is precisely what the tldr pages project aims to do.

In the tldr project’s own words: “The tldr pages are a community effort to simplify the beloved man pages
with practical examples” (I love the wording – the beloved man pages indeed!).

The tldr project seems to be pretty popular, with a large number of spin-offs, implementing the same
idea in different ways. Check these out:

• The main website: https://tldr.sh/
• The tldr wiki site with various clients: https://github.com/tldr-pages/tldr/wiki/tldr-

pages-clients

TL;DR means Too Long; Didn’t Read.

https://tldr.sh/
https://github.com/tldr-pages/tldr/wiki/tldr-pages-clients
https://github.com/tldr-pages/tldr/wiki/tldr-pages-clients

Online Chapter 19

Using the tldr web client
Practically, let’s use it via this web client https://tldr.inbrowser.app/. Head over to it, simply type
in the command name (I used tar), and see the result instantly pop up (Figure 14.5).

Very interesting, the URL now becomes https://tldr.inbrowser.app/pages/common/tar. Well, a
picture’s worth a thousand words:

Figure 14.5: A screenshot of one of the tldr web clients in action

Moving along, you’ll recall that, with respect to APIs, we said that user space system calls fall under
section 2 of the man pages, library subroutines under section 3, and kernel APIs under section 9. Given
this, then, in this book, why don’t we specify the, say, printk kernel function (or API) as printk(9) –
as man man shows us that section 9 of the manual is Kernel routines?

https://tldr.inbrowser.app/
https://tldr.inbrowser.app/pages/common/tar

Kernel Workspace Setup20

Well, it’s fiction, (at least on today’s Linux): no man pages actually exist for kernel APIs! So, how do you
get documentation on the kernel APIs, development model, and so on? That’s just what we will briefly
delve into in the following section.

Locating and using the Linux kernel documentation
The Linux kernel isn’t a toy project; it’s an industry-strength, solid, proven OS, an engineer’s OS that’s
all about performance in even very demanding situations (within it’s design envelope). Given this,
internal design and architecture decisions do tend to get complex; understanding them is critical.
The elaborate kernel documentation comes to the rescue! It documents in detail not just the APIs and
such, but also, more importantly, major design decisions.

The community has developed and evolved the Linux kernel documentation into a good state over
many years of effort. The latest version of the kernel documentation, presented in a nice and modern
web style, can always be accessed online here: https://www.kernel.org/doc/html/latest/.

(Of course, as we will mention in the next chapter, the kernel documentation is always available for
that kernel version within the kernel source tree itself, within the directory named Documentation/.)

It’s always advisable to look up the documentation for the kernel version you’re working on. As just one
example of the online kernel documentation, for the kernel we’ll be using (6.1 LTS), see the following
partial screenshot of the page on Core Kernel Documentation/Basic C Library Functions (https://www.
kernel.org/doc/html/v6.1/core-api/kernel-api.html#basic-c-library-functions):

https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/v6.1/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/v6.1/core-api/kernel-api.html#basic-c-library-functions

Online Chapter 21

Figure 14.6: Partial screenshot showing a small part of the modern online Linux kernel (v6.1)
documentation

As can be gleaned from the screenshot, the modern documentation is pretty comprehensive. It even
advises you that the simple_strtoull() API is considered obsolete, and to use the kstrtoull() API
instead (see the last line in Figure 14.6).

Kernel Workspace Setup22

Generating the kernel documentation from source
You can literally generate the full Linux kernel documentation from within the kernel source tree in
various popular formats (including PDF, HTML, LaTeX, EPUB, or XML), in a Javadoc or Doxygen-like
style. The modern documentation system used internally by the kernel is called Sphinx. Using make
help within the kernel source tree will reveal several documentation targets, among them htmldocs,
pdfdocs, and more. So, you can, for example, cd to the kernel source tree and run make pdfdocs to
build the complete Linux kernel documentation as PDF documents (the PDFs, as well as some other
meta-docs, will be placed in Documentation/output/latex). The first time, at least, you will likely be
prompted to install several packages and utilities (we don’t show this explicitly).

Static analysis tools for the Linux kernel
Static analyzers are tools that, by examining the source code, attempt to identify potential errors,
and even security-related issues, within it. They can be tremendously useful to you as the developer,
though you must learn how to “tame” them – in the sense that they can often generate false positives.

Several useful static analysis tools exist. Among them, the ones that are more relevant for Linux kernel
code analysis include the following:

• Sparse: https://sparse.wiki.kernel.org/index.php/Main_Page
• Coccinelle: http://coccinelle.lip6.fr/ (requires the ocaml package installed)
• Smatch: http://smatch.sourceforge.net/ and http://repo.or.cz/w/smatch.git

In addition, these are general-purpose C/C++ static analyzers that can be useful as well:

• Flawfinder (simple, geared toward finding security issues): https://dwheeler.com/flawfinder/
• Cppcheck: https://github.com/danmar/cppcheck

Of course, there are also several high-quality commercial static analysis tools available. Among them
are the following:

• SonarQube: https://www.sonarqube.org/ (a free and open-source community edition is
available)

• Coverity Scan: https://scan.coverity.com/
• Klocwork: https://www.meteonic.com/klocwork

Don’t worry if the preceding details are not crystal clear yet. I suggest you first read Chapter
2, Building the 6.x Linux Kernel from Source – Part 1, and Chapter 3, Building the 6.x Linux
Kernel from Source – Part 2, and then revisit these details.

Clang is a compiler frontend to GCC that is becoming popular even for kernel builds; it has
a static analysis component as well. (Clang is in fact the compiler used to build Android.)

https://sparse.wiki.kernel.org/index.php/Main_Page
http://coccinelle.lip6.fr/
http://smatch.sourceforge.net/
http://repo.or.cz/w/smatch.git
https://dwheeler.com/flawfinder/
https://github.com/danmar/cppcheck
https://www.sonarqube.org/
https://scan.coverity.com/
https://www.meteonic.com/klocwork

Online Chapter 23

Static analysis tools can save the day. Time spent learning how to use them effectively is time well spent!

LTTng – the Linux Trace Toolkit next generation
At times, often during performance analysis, and even for debugging, it’s key to understand what code
paths are taken (most often), and where bottlenecks lie. Profiling and tracing tools often come to the
rescue in such cases. A superb tool for tracing and profiling is the powerful Linux Tracing Toolkit next
generation (LTTng) toolset, a Linux Foundation project. LTTng allows you to trace both user space
(applications) and/or the kernel code paths in minute detail. This can tremendously aid you in under-
standing where performance bottlenecks occur, as well as aiding you in understanding the overall
code flow and thus in debugging scenarios, learning about how the code actually performs its tasks.

In order to learn how to install and use it, I refer you to its very good documentation here: https://
lttng.org/docs (try https://lttng.org/download/ for installation for common Linux distributions).

It’s also highly recommended that you install the Trace Compass GUI: https://www.eclipse.org/
tracecompass/. It provides an excellent GUI for examining and interpreting LTTng’s output.

As an example (I can’t resist!), here’s a screenshot of a capture by LTTng being “visualized” by the superb
Trace Compass GUI. Here, I show a couple of hardware interrupts (IRQ lines 1 and 130, the interrupt
lines for the i8042 and Wi-Fi chipset, respectively, on my native x86_64 Linux system):

Figure 14.7: Sample screenshot of the Trace Compass GUI; samples recorded by LTTng showing IRQ
lines 1 and 130

Trace Compass minimally requires a Java Runtime Environment (JRE) to be installed
as well. We’ve installed one on our Ubuntu 23.04 LTS system – the openjdk-22-jdk[-
headless] package.

https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/download/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/

Kernel Workspace Setup24

The pink color (we provide a PDF file that has full-color images of all the screenshots/diagrams used
in this book. Link: http://www.packtpub.com/sites/default/files/downloads/9781803232225_
ColorImages.pdf) in the upper part of the preceding screenshot represents the occurrence of a
hardware interrupt. Underneath that, in the IRQ vs Time tab (it’s only partially visible), the interrupt
distribution is seen. (In the distribution graph, the y axis is the time taken; interestingly, the network
interrupt handler – in red – seems to take very little time. The i8042 keyboard/mouse controller chip’s
handler – in blue – takes more time, even – in some cases – exceeding 200 microseconds.)

Disclaimer: Among the next few utilities/projects mentioned, I am the primary author of the procmap
and SEALS project efforts.

The procmap utility
Visualizing the complete memory map of the kernel Virtual Address Space (VAS) as well as any given
process’s user VAS is what the procmap utility is designed to do.

The description on its GitHub page sums it up:

“It outputs a simple visualization of the complete memory map of a given process in a vertically-tiled
format ordered by descending virtual address... The script has the intelligence to show kernel and
user space mappings as well as calculate and show the sparse memory regions that will be present.

Also, each segment or mapping is (very approximately) scaled by relative size and color-coded for
readability. On 64-bit systems, it also shows the so-called non-canonical sparse region or ‘hole’ (typi-
cally close to a whopping 16,384 PB on the x86_64).”

The utility includes options to see only kernel space or user space, verbose and debug modes, and the
ability to export its output in convenient CSV format to a specified file. It has a kernel component as
well and currently works (and auto-detects) on x86_64, AArch32, and AArch64 CPUs.

Download/clone it from https://github.com/kaiwan/procmap. Here’s (Figure 14.8) a partial screenshot
of a run by procmap, showing a portion of its output (the VAS of the kernel):

Do note, though, that this utility is still considered to be under development; there are
several caveats (since the first edition, several fixes have been made; see the GitHub repo
for details). Feedback and contributions are most appreciated!

http://www.packtpub.com/sites/default/files/downloads/9781803232225_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781803232225_ColorImages.pdf
https://github.com/kaiwan/procmap

Online Chapter 25

Figure 14.8: A partial screenshot of the procmap utility’s output, showing only the top portion of
kernel VAS on x86_64

We make good use of this utility in Chapter 7, Memory Management Internals – Essentials.

Kernel Workspace Setup26

Simple Embedded ARM Linux System (the SEALS) project
SEALS, or Simple Embedded ARM Linux System, is a very simple “skeleton” Linux base system running
on a QEMU-emulated (ARM) machine. It provides a primary Bash script that asks the end user what
functionality they want via a menu, then accordingly proceeds to cross-compile a Linux kernel for
ARM, and then creates and initializes a simple root filesystem. It can then call upon QEMU to emulate
and run the chosen platform (the ARM-32 Versatile Express CA-9 is the default board emulated). The
useful thing is, the script builds the target kernel, the root filesystem, and the root filesystem image
file, and sets things up for boot. It even has a simple GUI (as well as a console-based) frontend, to
make usage a bit simpler for the end user.

Since the first edition of this book, this project has undergone several fixes and enhancements; it can
now emulate both 32- and 64-bit ARM platforms as well as the x86_64 PC platform. Here’s a partial
screenshot of using SEALS to emulate a Raspberry Pi CM 3 IO board; you can just about see the (em-
ulated) system booting up:

Figure 14.9: Partial screenshot showing the SEALS project run, emulating a Raspberry Pi CM3 via QEMU

Online Chapter 27

Thus, SEALS can be useful to quickly try things out, for quick prototyping and learning. You don’t even
require actual hardware; your laptop is now sufficient (to emulate these boards and try things out)!

The project’s GitHub page can be found here: https://github.com/kaiwan/seals/. Clone it and
give it a try. A tutorial section helps you get off the ground quickly: https://github.com/kaiwan/
seals/#a-very-brief-tutorial-on-getting-going-with-seals.

Modern tracing and performance analysis with eBPF
An extension of the well-known Berkeley Packet Filter, or BPF, is eBPF, the extended BPF. (FYI, at
times it’s referred to simply as BPF, dropping the “e” prefix; here we’ll explicitly use the term eBPF.)
Very briefly, BPF used to provide the supporting infrastructure within the kernel to effectively trace
network packets. eBPF is a relatively recent kernel innovation – available only from the Linux 4.0
kernel onward. It extends the BPF notion, allowing you to trace much more than just the network
stack. eBPF is essentially virtual machine technology, allowing one to write (small) programs and run them
in a safe, isolated environment within the kernel. In effect, eBPF and its frontends are a really modern
and powerful approach to observability, tracing, performance analysis, and more on Linux systems,
even in production.

To use eBPF, you will need a system with the following:

• Linux kernel 4.0 or later
• Kernel support for BPF (https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-

configuration)
• The BCC or bpftrace frontends installed (link to install them on popular Linux distributions:

https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc)
• Root access on the target system

Using the eBPF kernel feature directly is very hard, so there are several easier frontends to use. Among
them, BCC and bpftrace are regarded as very useful. Check out the following link to a picture that opens
your eyes to just how many powerful BCC tools are available to help trace different Linux subsystems
and hardware: https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.
png.

https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/#a-very-brief-tutorial-on-getting-going-with-seals
https://github.com/kaiwan/seals/#a-very-brief-tutorial-on-getting-going-with-seals
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png

Kernel Workspace Setup28

The main site for BCC can be found at https://github.com/iovisor/bcc. We shall make use of a bit
of the eBPF tooling in some later chapters.

The LDV (Linux Driver Verification) project
The Russian Linux Verification Center, founded in 2005, is an open-source project; it has specialists
in, and thus specializes in, automated testing of complex software projects. This includes compre-
hensive test suites, frameworks, and detailed analyses (both static and dynamic) being performed
on the core Linux kernel as well as on the primarily device drivers within the kernel. This project
puts a great deal of focus on the testing and verification of kernel modules as well, which many similar
projects tend to skim.

Of particular interest to us here is the Online Linux Driver Verification Service page (http://
linuxtesting.org/ldv/online?action=rules); it contains a list of a few verified rules (Figure 14.10):

You can install the BCC tools for your regular host or native Linux distro by reading the in-
stallation instructions here: https://github.com/iovisor/bcc/blob/master/INSTALL.
md.

Why not on our guest Linux VM? You can, when running a distro kernel (such as an Ubun-
tu- or Fedora-supplied kernel). The reason: the installation of the BCC toolset includes
(and depends upon) the installation of the linux-headers-$(uname -r) package; this
linux-headers package exists only for distro kernels (and not for our custom 6.1 kernel
that we shall often be running on the guest). There is a workaround: building the kernel
with the kernel config CONFIG_IKHEADERS=m (you’ll learn how to do this in Chapter 2,
Building the 6.x Linux Kernel from Source – Part 1). In fact, part of the error message from
the eBPF tooling spells this out: “Unable to find kernel headers. Try rebuilding kernel with
CONFIG_IKHEADERS=m (module) or installing the kernel development package for your run-
ning kernel version.”

FYI, my book Linux Kernel Debugging, covers using LTTng, Trace Compass, KernelShark,
ftrace, trace-cmd, procmap, and many more debugging tools and techniques in depth.

https://github.com/iovisor/bcc
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md

Online Chapter 29

Figure 14.10: Screenshot of the Rules page of the Linux Driver Verification (LDV) project site

By glancing through these rules, we’ll be able to not only see the rule but also instances of actual cases
where these rules were violated by driver/kernel code within the mainline kernel, thus introducing
bugs. The LDV project has successfully discovered and fixed (by sending in patches in the usual man-
ner) several driver/kernel bugs.

In a few of the upcoming chapters, we shall mention instances of these LDV rule violations (for ex-
ample, memory leakage, Use After Free (UAF) bugs, and locking violations) having been uncovered,
and (probably) even fixed.

Here are some useful links on the LDV website:

• The Linux Verification Center home page: http://linuxtesting.org/
• Linux Kernel Space Verification: http://linuxtesting.org/kernel
• Online Linux Driver Verification Service page with verified rules: http://linuxtesting.org/

ldv/online?action=rules

• Problems in Linux Kernel page; lists over 400 issues found in existing drivers (mostly fixed as
well): http://linuxtesting.org/results/ldv

http://linuxtesting.org/
http://linuxtesting.org/kernel
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/results/ldv

Kernel Workspace Setup30

Without claiming to be complete by any stretch, perhaps more modern is tooling like the following:

• GitHub provides (optional, free to a limited extent for public repos) code-scanning workflow
technology via GitHub Actions; see more details here: https://github.com/features/actions.

• Commercial: There are many suites for code-scanning; as one commercial example, Synopsys’s
Black Duck “software composition analysis (SCA) helps teams manage the security, quality,
and license compliance risks that come from the use of open-source and third-party code in
applications and containers.”

Summary
In this chapter, we covered in detail the hardware and software requirements to set up an appropriate
development environment for beginning to work on Linux kernel programming, including setting
up a VM (via OSBoxes or otherwise). In addition, we mentioned the basics and provided links, wher-
ever appropriate, for setting up a Raspberry Pi device, installing powerful tools such as QEMU (and a
cross-toolchain), and so on. We also threw some light on other miscellaneous tools and projects that
you, as a budding kernel and/or device driver developer, might find useful, as well as information on
how to begin looking up the Linux man pages and Linux kernel documentation.

In this book, we recommend and expect you to try out and work on kernel code in a hands-on fashion
– remember, always be empirical! To do so, you must have a proper kernel workspace environment
set up, which we have successfully done in this chapter.

Now that our work environment is ready, let’s move on and explore the brave world of Linux kernel
development; your kernel journey’s about to begin! The next two chapters will teach you how to
download, extract, configure, and build a Linux kernel from source.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s mate-
rial: https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/questions/
ch1_qs_assignments.txt. You will find some of the questions answered in the book’s GitHub repo:
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_
assgn. The Q&A is organized chapter-wise.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather detailed list of on-
line references and links (and at times even books) in a Further reading document in this book’s GitHub
repository. The Further reading document (again organized chapter-wise) is available here: https://
github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md.

https://github.com/features/actions
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/questions/ch1_qs_assignments.txt
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/questions/ch1_qs_assignments.txt
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

Online Chapter 31

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/SecNet

https://packt.link/SecNet

	_Int_WA9RGyFZ

