Chapter 1: Introduction to FPGA Architectures and Xilinx Vivado

Simple ASIC Flow
Simple FPGA Flow

Graphical Representation

Graphical Representation
in0

Graphical Representation

In	Out
0	1
1	0

Truth Table

in0	in1	out
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

in0	in1	out
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

in0	in1	out
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table

Sources	? - ロ [C
Q.	象
```\checkmark \cong \text { Design Sources (1)} #. logic_ex (logic_ex.sv) ~}\mathrm{ Constraints (1) ~ constrs_1 (1) ID Nexys-A7-100T-Master.xdc ~E Simulation Sources (1) ~ sim_l (1) \vee-.tb (tb.sv) (1) - u_logic_ex : logic_ex (logic_ex.sv) > Utility Sources```	
Hierarchy Libraries Compile Order	

SIMULATION - Behavioral Simulation - Functional - sim_1 - tb



## Tcl Console $\times$ Messages Log

```
Q. 三 会 | 自 目亩
Time resolution is l ps
source tb.tcl
set curr_wave [current_wave_config]
if { [string length $curr_wave] == 0 } {
if { [llength [get_objects]] > 0} {
 add_wave /
 set_property needs_save false [current_wave_config]
 } else {
 send_msg_id Add_Wave-1 WARNING "No top level signals found. Simulator will start without a w
 }
}
run l000ns
Timescale of (tb) is lns/l00ps.
Setting switches to 00
Setting switches to 01
Setting switches to 10
Setting switches to ll
PASS: logic ex test PASSED!
$stop calle\overline{d}}\mathrm{ at time : 400 ns : File "/home/fbruno/git/private/book/CHl/tb/tb.sv" Line 20
INFO: [USF-XSim-96] XSim completed. Design snapshot 'tb_behav' loaded.
INFO: [USF-XSim-97] XSim simulation ran for l000ns
 launch_simulation: Time (s): cpu = 00:00:06 ; elapsed = 00:00:06 . Memory (MB): peak = 8121.176; g
\ominus curren\overline{t}_wave_config {}
WARNING: [Wavedata 42-16] Error Unable to get wave configuration ''.
- Untitled 4
add_wave {{/tb/SW}} {{/tb/LED}}
Type a Tcl command here
```





## Chapter 2: Combinational Logic






## Settings



Specify Generics/Parameters.
$\square$

| Utilization |  |  | Post-Synthesis | \| Post-Implementation |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


Settings					
Q.	General   Specify values for various settings used throughout the design flow. These settings apply to the current project.				
Project Settings   General					
Simulation   Elaboration   Synthesis   Implementation   Bitstream   IP	Name: project_2    Project device: Arty A7-100 (xc7al00tcsg324-1) $\cdots$   Target language: Verilog $\vee$   Default library: xil_defaultlib   				
Tool Settings   Project   IP Defaults   > XHub Store   Source File   Display   WebTalk   Help   > Text Editor 3rd Party Simulators   > Colors Selection Rules Shortcuts   > Strategies   > Remote Hosts   > Window Behavior	Verilog options:   Generics/Parameters:   Loop count:		rsion=V   ic \{TEST	01   EADING	
?		OK	Cancel	Apply	Resto



| Utilization |  |  | Post-Synthesis | \| Post-Implementation |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Utilization |  | Post-Synthesis | \| Post-Implementation |
| :--- | ---: | ---: | ---: | ---: |

## Chapter 3: Counting Button Presses

 posedge negedge

Data in (D)

Clock


Output (Q)

$\checkmark$ Simulation (2 errors)
$\checkmark$ sim_1 (2 errors)
(1) [VRFC 10-3818] variable ' Q ' is driven by invalid combination of procedural drivers [simple_init_ff.sv:6]
(-) [XSIM 43-3322] Static elaboration of top level Verilog design unit(s) in library work failed.


Every clock cycle, $Q$ gets the previous value of stage and stage gets the previous value of $D$


initial value $=$ ' $1 \quad$ Reset asynchronous to clock



Tcl Console	Messages	Log	Reports	Design Runs	Power	Methodology	Timing $\times$			
Q $\overline{\text { I }}=$	(1)			Design Timing Summary						
General Information Timer Settings   (-) Design Timing Summary Clock Summary (2)   > Check Timing (16)   > E Intra-Clock Paths   $\checkmark$ Inter-Clock Paths   BTNC to clk   (e) Setup -4.136 ns (2)   Hold 1.119 ns (2)   Other Path Groups   User Ignored Paths				Setup			Hold		Pulse Width	
				Worst Negativ Total Negative Number of Fail Total Number Timing constrai	Slack (WNS) Slack (TNS): ing Endpoints: of Endpoints: ts are not m	S): $\quad-4.136 \mathrm{~ns}$   : $\quad-8.233 \mathrm{~ns}$   ts: 2   199   met.	Total Number of Endpoints:	0.148 ns   0.000 ns   0   199	Worst Pulse Width Slack (WPWS):   Total Pulse Width Negative Slack (TPWS):   Number of Failing Endpoints:   Total Number of Endpoints:	4.500 ns   0.000 ns   0   123
Timing Summ	ary -impl_1	ved)								

```
ns |Power Methodology Timing x
```






## Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.498 ns	Worst Hold Slack (WHS):	0.169 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	168	Total Number of Endpoints:	168	Total Number of Endpoints:	125

All user specified timing constraints are met.



Eloorplanning
y/O Planning
Timing
Power Constraints Advisor...
H Schematic F4
Show Connectivity
Ctrl+
Show Hierarchy F6

Edit Device Properties...
Create and Package New IP...
Create Interface Definition...
Enable Dynamic Function eXchange...
Run Tcl Script...
Property Editor Ctrl+
Associate ELF Files...
Generate Memory Configuration File...
Compile Simulation Libraries...
( Set Up Debug...
XHub Stores...
Custom Commands
Launch Vitis IDE
§ Language Iemplates
序 Settings...




## Chapter 4: Let's Build a Calculator









Cores | Interfaces


Search: Q-clock	(2) (2 matches)				
Name		AXI4	Status	License	VLNV
$\checkmark$ E Vivado Repository					
>EAudio Connectivity \& Processing					
> AXI Infrastructure					
> Debug \& Verification					
> Embedded Processing					
$\checkmark$ ¢FPGA Features and Design					
$\checkmark$ Elocking					
\# Clocking Wizard		AX14	Production	Included	xilinx.com:ip:clk_wiz:6.0




DRC Violations				Timing	Setup	Hold \| Pulse Width
Summary: © 9 warnings Implemented DRC Report				Worst Negative Slack (WNS): Total Negative Slack (TNS): Number of Failing Endpoints: Total Number of Endpoints: Implemented Timing Report	541 ns ns 9	
Utilization	Post-Synthesis	hesis \| Post-1	mplementation	Power		Summary \| On-Chip
			Graph \| Table	Total On-Chip Power:   Junction Temperature:   Thermal Margin:   Effective 9 J A :   Power supplied to off-chip devices:   Confidence level:   Implemented Power Report	$\begin{aligned} & 0.239 \mathrm{~W} \\ & 26.1^{\circ} \mathrm{C} \\ & 58.9^{\circ} \mathrm{C}(12.8 \mathrm{~W}) \\ & 4.6^{\circ} \mathrm{C} \mathrm{~W} \end{aligned}$	
Resource	Utilization	Available	Utilization \%			
LUT	489	63400	0.77			
FF	191	126800	0.15			
DSP	2	240	0.83		0 W	
10	38	210	18.10		Low	
BUFG	2	32	6.25			
MMCM	1	6	16.67			




Counter $=1 \mathrm{~s}$

Chapter 5: FPGA Resources and How to Use Them



Trigger Setup - hw_ila_1 $\quad$ Capture Setup - hw_ila_1 $\times$ O. $+\quad=1$

Name	Operator		Radix		Value
amplitude_valid	$==$	$\vee$	$[B]$	$\vee$	1


Iools	Reports Window Layout View	Help
	Create and Package New IP...   Create Interface Definition...   Enable Dynamic Function eXchange...   Run Tcl Script...   Property Editor   Associate ELE Files...   Generate Memory Configuration File...   Compile Simulation Libraries...	$\mathrm{Ctrl}+\mathrm{J}$
	XHub Stares...   Custom Commands	,
	Launch Vitis IDE	
	Language Iemplates	
	Settings...	







# Chapter 6: Math, Parallelism, and Pipelined Design 




	Customize IP	$\times$
Floating-point (7.1)		

(i) Documentation IP Location C Switch to Defaults

IP Symbol Implementation De 4 - ミ	Component Name floating_point_0				$\otimes$
Show disabled ports	Operation Selection	Precision of Inputs	Optimizations	Interface Options	
	Please select from the Operation Selection	ollowing functions:   Add/Sub	act and Multipl	Add Operator optio	
	Absolute Valu	$\bigcirc \mathrm{B}$			
	Accumulator	$\bigcirc \mathrm{A}$			
	( Add/Subtract	$\bigcirc$	tract		
	$\bigcirc$ Compare				
	$\bigcirc$ Divide				
	Exponential				
	Fixed-to-float				
	Float-to-fixed				
	Float-to-float				
	Fused Multiply				
	Logarithm				
	Multiply				
	Reciprocal				
	Reciprocal Sq	Re Root			
	Square-root				
	Add-subtract combination enabled. OPERATION input specifies which operation is performed. RESULT $=\mathbf{A}+/-\mathbf{B}$				




Format for our temperature sensor



Select Add




Chapter 7: Introduction to AXI


tools->Create and package IP



## Create and Package New IP

## Edit in IP Packager Project Name

Enter a name for your project and specify a directory where the project data files will be stored



## Ports and Interfaces

Name	Interface Mode	Enablement Dependency	Direction	Driver Value	Size   Left	Size   Right	Size Left Dependency	Size Right Dependency	Type Name
$\checkmark$ d. seven_segment	slave								
D. seven_segment_tdata			in	0	31	0	((NUM_SEGMENTS * 4)		wire
D. seven_segment_tuser			in	0	7	0	(NUM_SEGMENTS - 1)		wire
D. seven_segment_tvalid			in						wire
$\checkmark$ Clock and Reset Signals									
> dr clk	slave								
$\square$ anode			out		7	0	(NUM_SEGMENTS - 1)		logic
$\square$ cathode			out		7	0			logic



Flow Navigator	$\cdots$ ? -
~ PROJECT MANAGER   Settings   Add Sources   Language Templates   IP Catalog	
$\checkmark$ IP INTEGRATOR	
Create Block Design Gpen Block Design Geqnerate Block Design Select Create Block	











	\＃${ }^{\text {F }}$ AXI AHBLite Bridge	澵 AXI Protocol Checker
	\＃ AXI APB Bridge	
	\＃AXI BRAM Controller	
Search：Q－axi（68 matches）	\＃${ }^{\text {F }}$ AXI CAN	辈 AXI Protocol Converter
\＃AHB－Lite to AXI Bridge	\＃\＃AXI Central Direct Memory Access	非 AXI Protocol Firewall
\＃AMM Master Bridge	\＃AXI Chip2Chip Bridge	\＃AXI Quad SPI
\＃AMM Slave Bridge	\＃AXI Clock Converter	\＃ \＃XI $^{\text {Register Slice }}$
\＃Arm Cortex－M1 Processor	\＃AXI Crossbar	\＃AXI Sideband Utility
\＃Arm Cortex－M3 Processor	\＃AXI Data FIFO	\＃AXI SmartConnect
\＃AXI－Stream FIFO	非 AXI DataMover	\＃AXI TFT Controller
\＃AXI 1 G／2．5G Ethernet Subsystem	\＃AXI Data Width Converter	非 AXI Timebase Watchdog Timer
\＃AXI4－Stream Accelerator Adapter	\＃AXI Direct Memory Access	\＃AXI Timer
\＃AXI4－Stream Broadcaster	\＃ \＃AXI EMC $^{\text {P }}$	\＃AXI Traffic Generator
\＃AXI4－Stream Clock Converter	\＃AXI EPC	讳 AXI UART16550
\＃AX14－Stream Combiner	非 AXI EthernetLite	非 AXI Uartlite
非 AXI4－Stream Data FIFO	瑯 AXI GPIO	\＃ \＃AXI USB2 Device $^{\text {P }}$
\＃AXI4－Stream Data Width Converter	\＃AXI HB ICAP	韯 AXI Verification IP
\＃AXI4－Stream Interconnect	\＃AXI HWICAP	\＃AXI Video Direct Memory Access
\＃AXI4－Stream Protocol Checker	\＃ FXIIIIC $^{\text {c }}$	\＃AXI Virtual FIFO Controller
\＃AX14－Stream Register Slice	非 $A X I$ Interconnect	\＃DFX AXI Shutdown Manager
\＃AXI4－Stream Subset Converter	辈 AXI Interrupt Controller	辈 JTAG to AXI Master
\＃\＃AXI4－Stream Switch	非 AXI Memory Init	\＃PR AXI Shutdown Manager
\＃${ }^{\text {P }}$ AX14－Stream to Video Out	\＃AXI Memory Mapped to Stream Mapper	\＃
\＃AXI4－Stream Verification IP	\＃AXI MMU	非 Video In to AXI4－Stream
	\＃AXI Multi Channel Direct Memory Access	
	\＃AXI Performance Monitor	

## Create and Package New IP

Create Peripheral，Package IP or Package a Block Design Please select one of the following tasks．

## Packaging Options

Package your current project
Use the project as the source for creating a new IP Definition．
Package a block design from the current project
Choose a block design as the source for creating a new IP Definition．
Select a block design：design＿1 $\downarrow$
Package a specified directory
Choose a directory as the source for creating a new IP Definition．

Create AXI4 Peripheral
Create a new AXI4 peripheral
Create an AXI4 IP，driver，software test application，IP Integrator AXI4 VIP simulation and debug demonstration design．


Create new peripheral

## Peripheral Details

Specify name, version and description for the new peripheral


## Create and Package New IP

$\times$
Add Interfaces
Add AX14 interfaces supported by your peripheral



Add Module
Select a module to add to the block design.
Module type: RTL
Search: Q-
adt7420_i2c_bd (adt7420_i2c_bd.v)
Hide incompatible modules
?
OK
Cancel



## Chapter 8: Lots of Data? MIG and DDR2



## Memory Interface Generator

The Memory Interface Generator (MIG) creates memory controllers for Xilinx FPGAs. MIG creates complete customized Verilog or VHDL RTL source code, pin-out and design constraints for the FPGA selected, and script files for implementation and simulation

## Vivado Project Options

This GUI includes all configurable options along with explanations to aid in generation of the required
controller. Please note that some of the options selected in the Vivado Project Options will be used in
generation of the controller. It is very important that the correct Vivado Project Options are selected. These
options are listed below.
Selected Vivado Project Options:
Fpga Family: Artix-7
Fpga Part: xc7al00t-csg324
Speed Grade : - 1
Synthesis Tool: VIVADO
Design Entry: VERILOG
If any of these options are incorrect, please click on "Cancel", change the Vivado Project Options, and restart MIG. This version of MIG is tested with Vivado 2018.3 or later, it is not tested with and restart MIG. This version


Memory Interface Generator



Memory Options CO - DDR2 SDRAM

Pin Compatible FPGAs
Memory Selection Controller Options AXI Parameter Memory Options
FPGA options
Extended FPGA Option
10 Planning Options
Bank Selection
Bank Selection
system Signals Selection
Summary
Simulation Options
PCB information
Design Notes
E. XILINX

Input Clock Period: Select the period for the PLL input clock (CLINN). MIG determines the allowable input clock periods based on the Memory Clock Period entered above and the clocking guidelines listed in the User Guide. The generated design will use the
selected Input clock and Memory Clock Periods to generate the required PIL parameters. If the required input clock period is not available, the Memory clock Period must be modified.

Choose the Memory Options for the memory device. Memory Option selections are restricted to those supported by the controller. Consult the memory vendor data sheet for more information.

Burst Type
Sequential
The ordering of accesses with in a burst is determined based on the burst length, the burst type and the starting column address.

Output Drive Strength
Selecting reduced strength will reduce all outputs to approximately 60 percent of the drive strength.

RTT (nominal) - ODT

memory channel.
3077 ps ( 324.992 MHz )

Controller Chip Select Pin
The Chip Select (CS\#) pin can be tied low externally to save one pin in the address/command
group when this selection is set to 'Disable: Disable is only valid for single rank configurations
Memory Address Mapping Selection


Set according to Digilent Documentation



Min Compatible FPGAs
Memory Selection
Controller Options
AXI Parameter
Memory Options
FPGA Options
Extended FPGA Options
IO Planning Options
Pin Selection
System Signals SelectioI
Summary
Simulation Options
<

## System Signals Selection

Select the system pins below appropriately for the interface. Customization of these pins can also be made in the XDC after the design is generated. For more information see UG586 Bank and Pin rules.
System Clock and Reference Clock pin selections will not be visible if the 'No Buffer' option was selected in the FPGA Options page

## System Signals

These signals may be connected internally to other logic or brought out to a pin.

- sys rst: This input signal is used to reset the interface.
- init_calib_complete: This signal indicates that the interface has completed calibration and memory initialization and is ready for commands. LOC constraint will be generated in XDC for Example design only based on "Pin Number" selection below.
- error: This output signal indicates that the traffic generator in the Example Design has detected a data mismatch. This signal does not exist in the User Design.

Signal Name	Bank Number	Pin Number	
sys_rst	Select Bank	-	No connect
init_calib_complete	Select Bank	-	No connect

E. XILINX.

All pins must be constrained to specific locations in order to generate a bit file in the implementation phase (this is not required for simulation).

| $\underline{\text { Usser Guide }}$ |
| :--- | :--- | :--- |





Open IP Example Design
Specify a location where the example project directory 'ddr2_controller_ex' will be placed.

Location



```
548:- //***
```





| hw_vio_1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q |  |  |  |

Chapter 9: A Better Way to Display - VGA






Chapter 10: Bringing It All Together




PS/2 Scancodes


0x0C



Chapter 11: Advanced Topics



Timing

$$
\begin{array}{ll}
\text { Worst Negative Slack (WNS): } & -2.454 \mathrm{~ns} \\
\text { Total Negative Slack (TNS): } & -257.8 \mathrm{~ns} \\
\text { Number of Failing Endpoints: } & 125 \\
\text { Total Number of Endpoints: } & 535 \\
\text { Implemented Timing Report } &
\end{array}
$$




## Timing

Setup | Hold | Pulse Width

Worst Negative Slack (WNS):
Total Negative Slack (TNS):
Number of Failing Endpoints:
Total Number of Endpoints:
Implemented Timing Report

## Timing

## Setup | Hold | Pulse Width

Worst Negative Slack (WNS):	-1.139 ns
Total Negative Slack (TNS):	-101.029 ns
Number of Failing Endpoints:	97
Total Number of Endpoints:	631
Implemented Timing Report	

## Timing

Worst Negative Slack (WNS):	0.444 ns
Total Negative Slack (TNS):	0 ns
Number of Failing Endpoints:	0
Total Number of Endpoints:	617
Implemented Timing Report	



