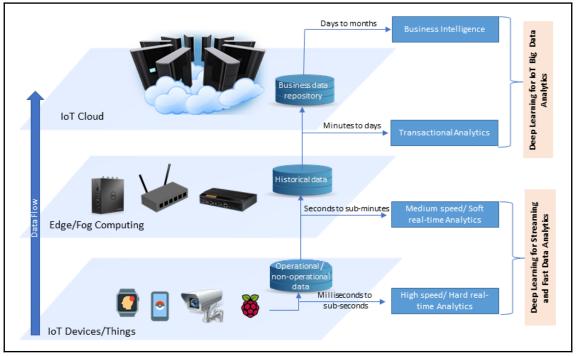
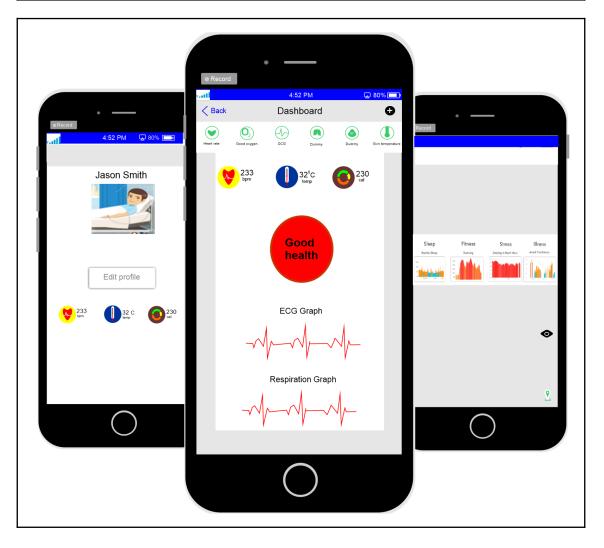
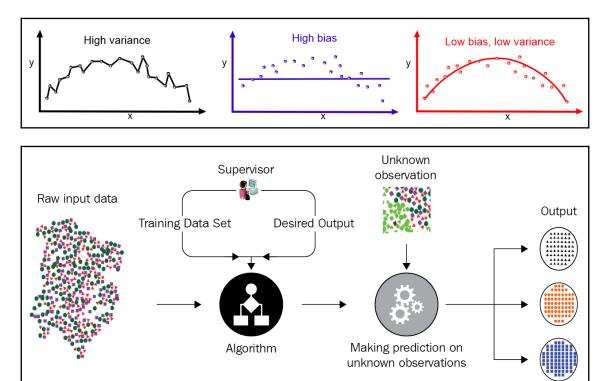
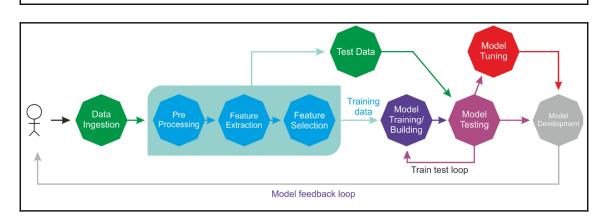

Chapter 1: The End-to-End Life Cycle of the IoT

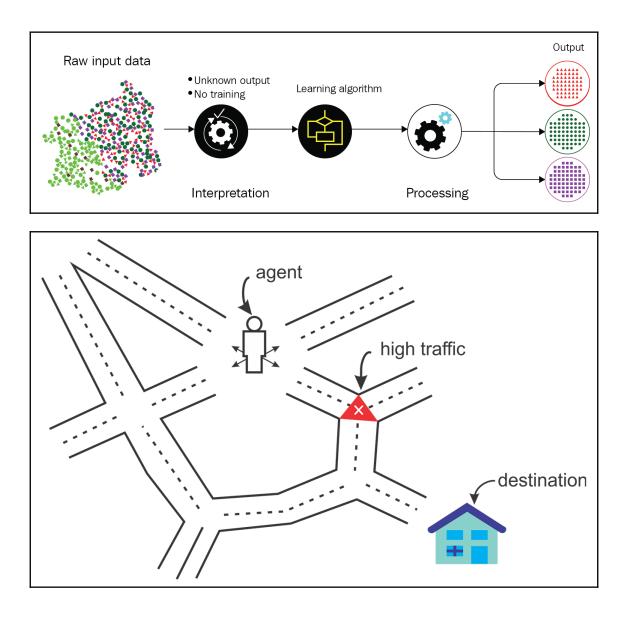


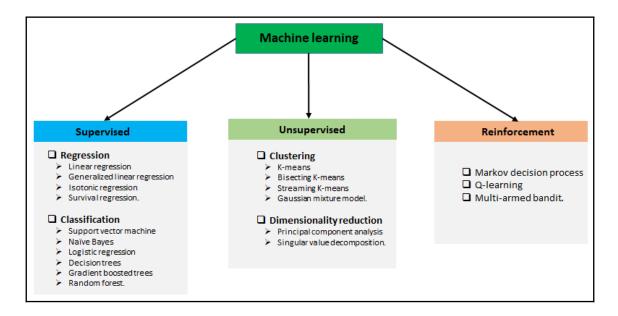


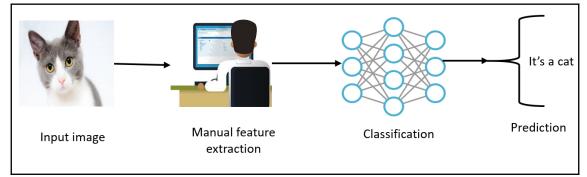
Transport Layer	Uploading pre-processed and secured data to the Cloud
Security Layer	Encryption/decryption, privacy, and integrity measures
Temporary Storage Layer	Data distribution, replication, and de-duplication Storage space virtualization and storage devices (NAS, FC, ISCSI, etc)
Pre-processing Layer	Data analysis, data filtering, reconstruction, and trimming
Monitoring Layer	Activities monitoring, power monitoring, resource monitoring, response monitoring, and service monitoring
Physical and Virtualization Layer	Virtual sensors and virtual sensor networks Things and physical sensors, wireless sensor networks

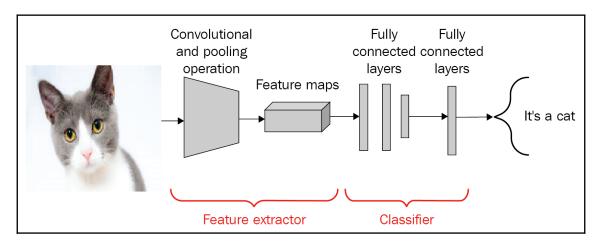


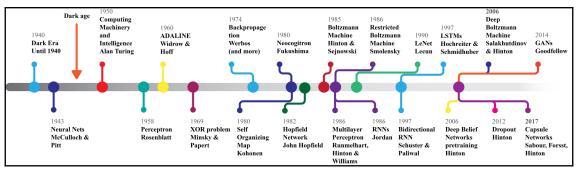

Volume	Velocity	Variety	Veracity	Variability	Value
 How much data? Billion devices will generate data in ZetaBytes. 	• How fast can I access? -IoT data can be accessed in real time.	What type of data? -Structured & unstructured IoT data - Heterogenous format of IoT data	• Is IoT data reliable? -Most IoT data are. - Crowdsensing data may not be.	•What are the rate of different IoT data flows? •Flow rate depends on applications, time, and space.	Usability and utility of data. -Most IoT data tremendously useful.

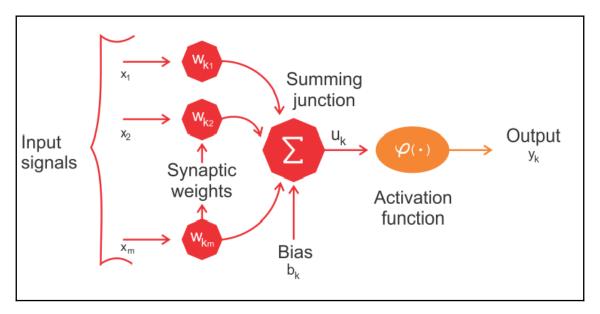


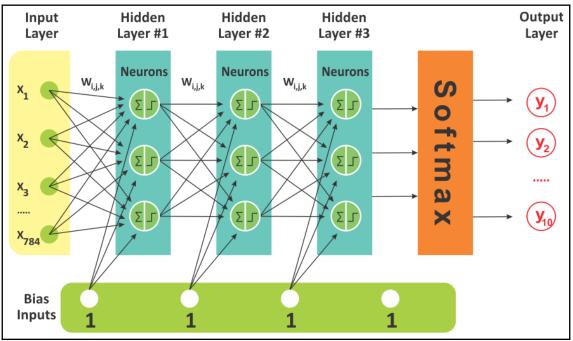


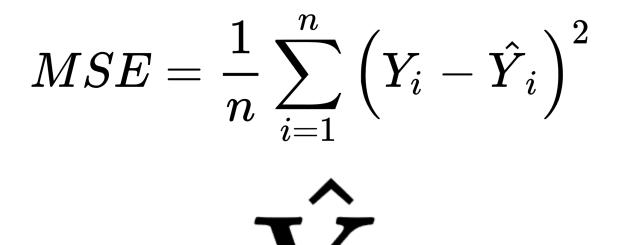

Chapter 2: Deep Learning Architectures for IoT

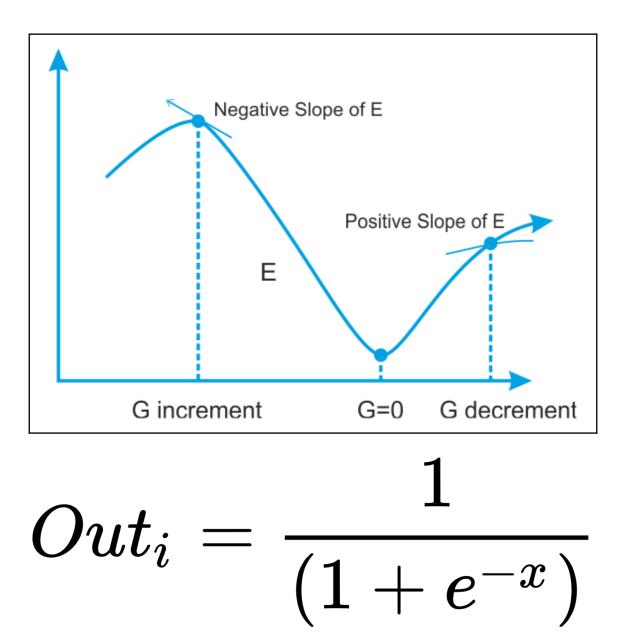


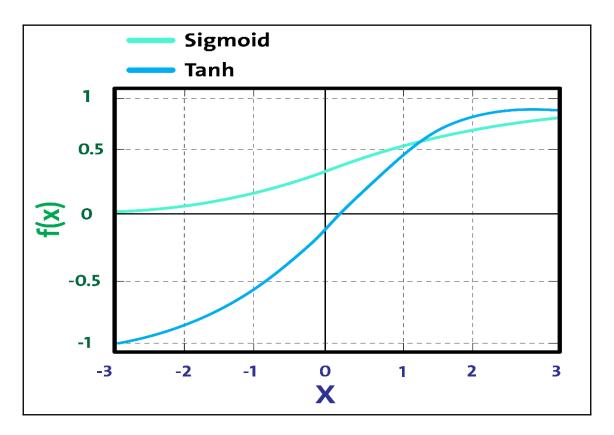


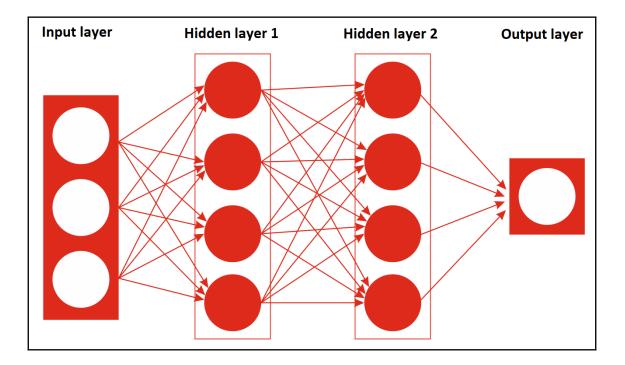


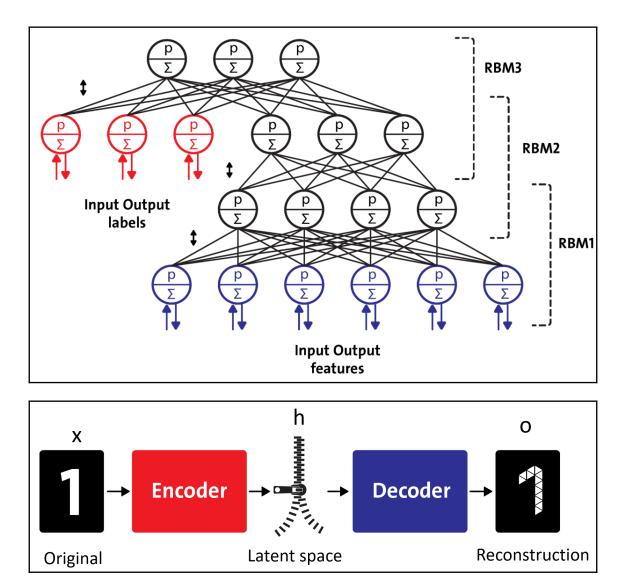


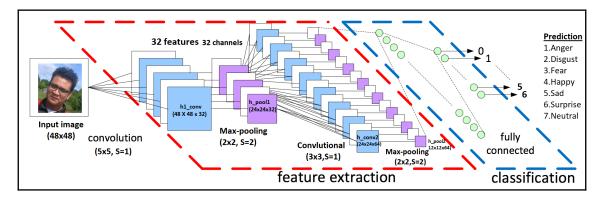


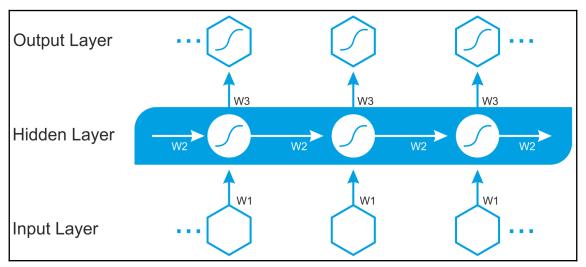


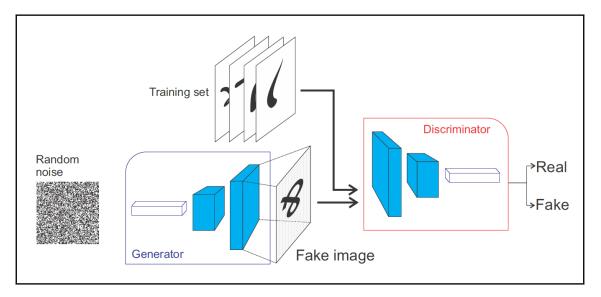

$$net_i = \sum_j W_{ij} X_j \dots \dots (a)$$
 $net_i = \sum_j W_{ij} X_j + b_j \dots \dots (b)$

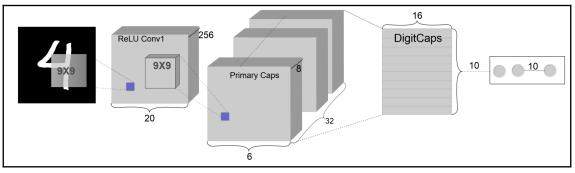


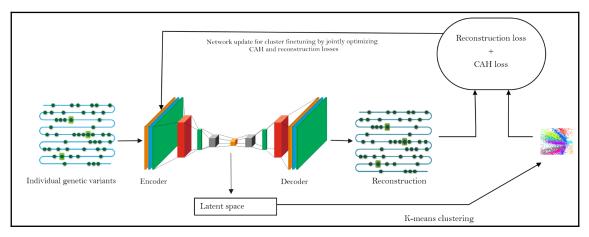


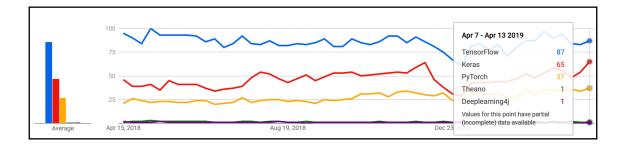


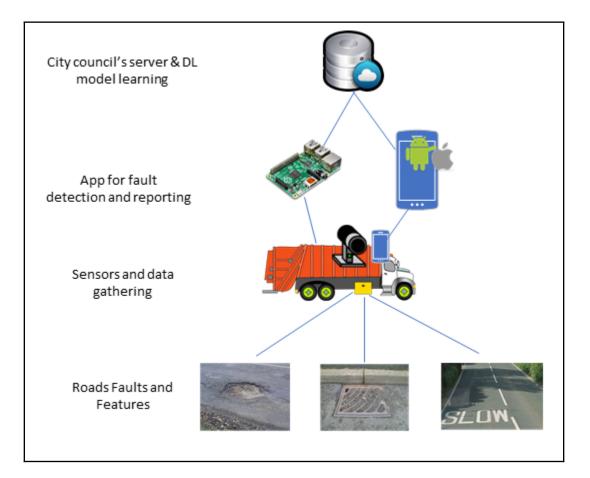


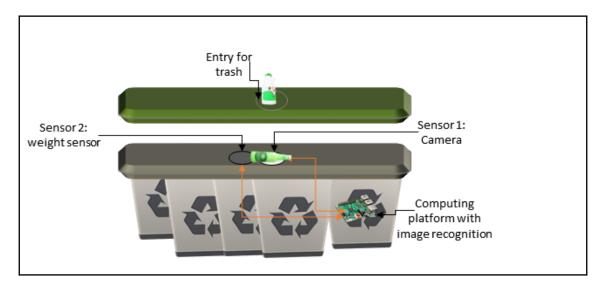

 $\tanh(x) = 2\sigma(2x) - 1$

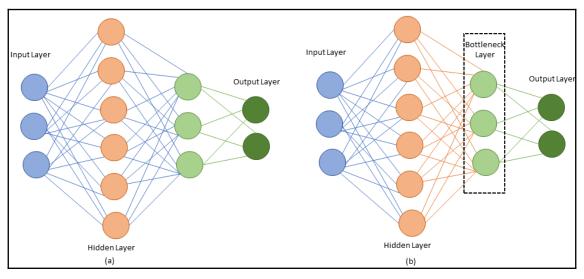


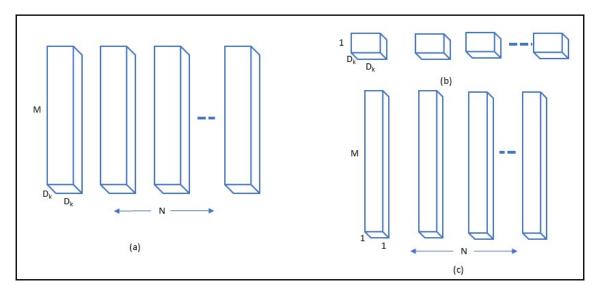


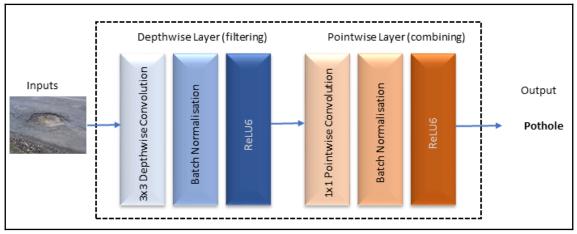


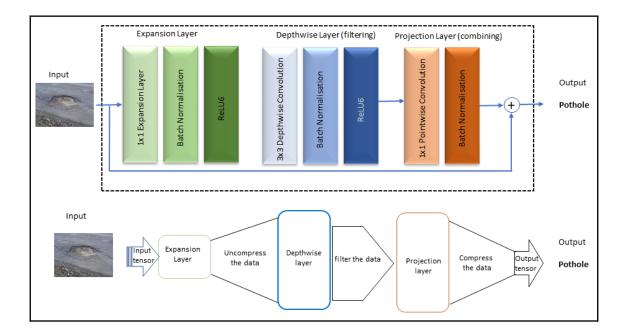


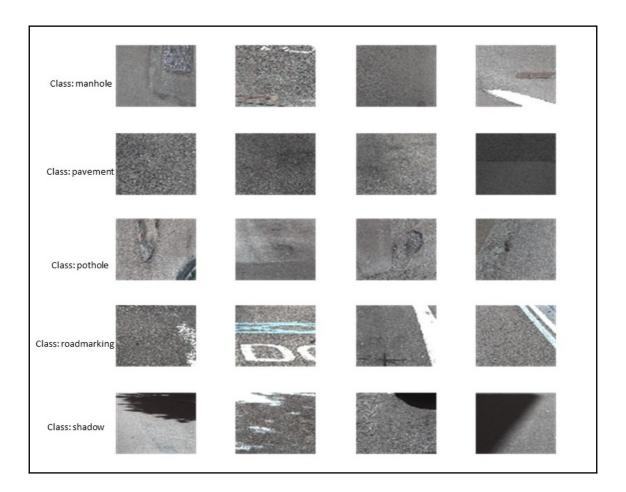


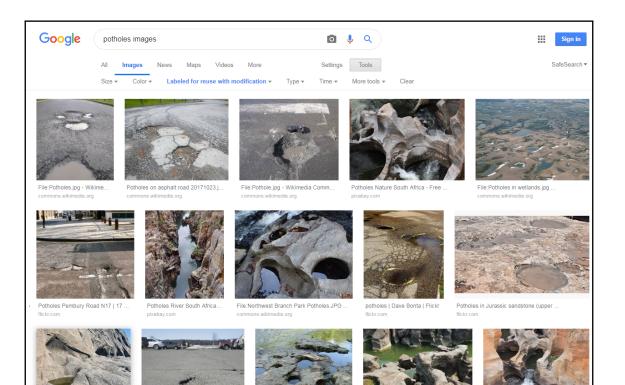


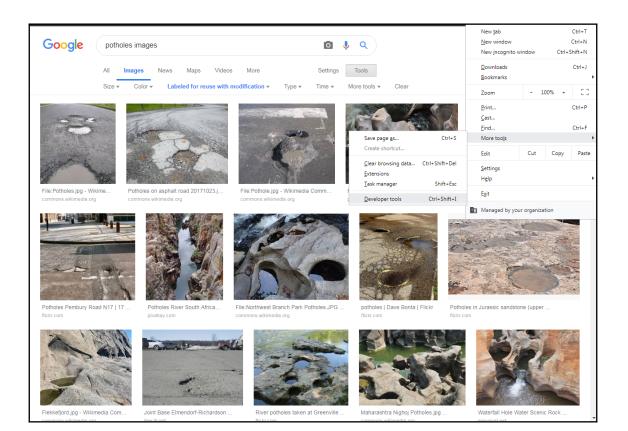

Chapter 3: Image Recognition in IoT

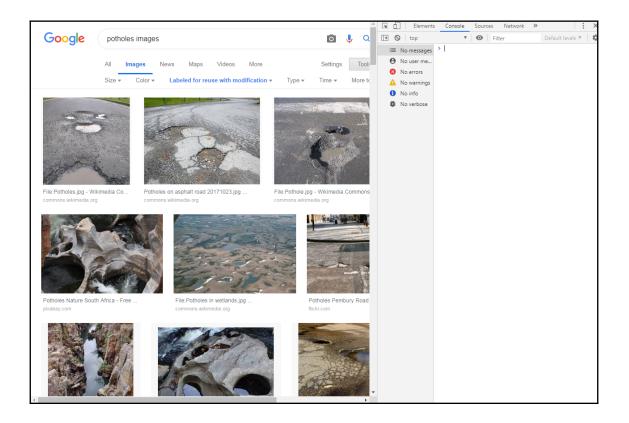


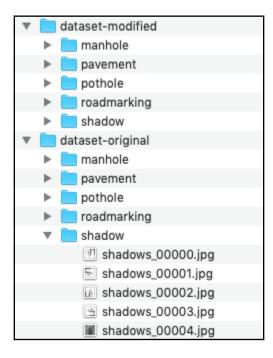


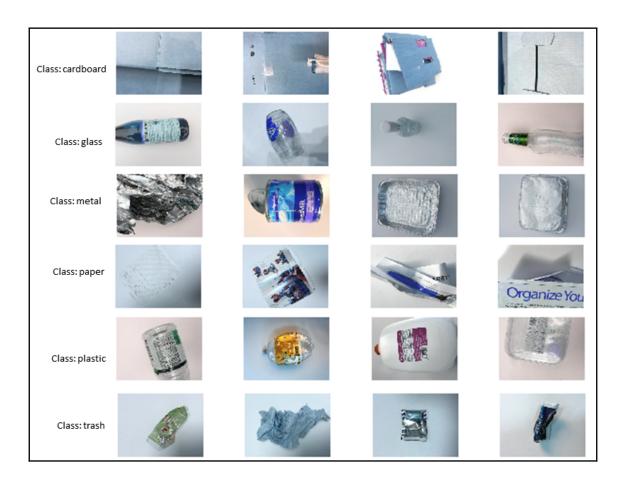


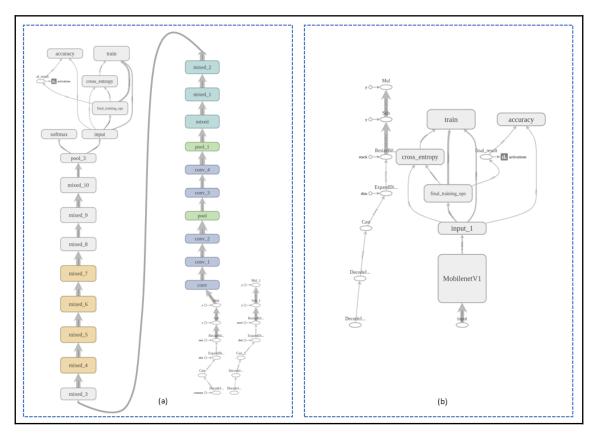




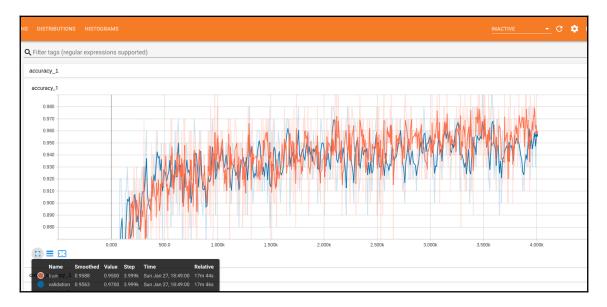


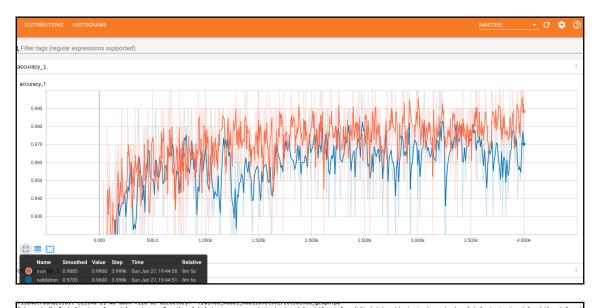




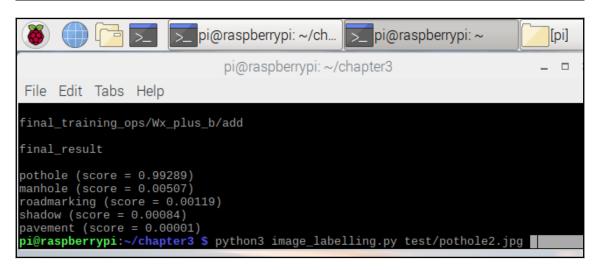


usage: retrain.py	[-h] [image_dir IMAGE_DIR] [output_graph OUTPUT_GRAPH] [intermediate_output_graphs_dir INTERMEDIATE_OUTPUT_GRAPHS_DIR] [intermediate_store_frequency INTERMEDIATE_STORE_FREQUENCY]
	[output_labels OUTPUT_LABELS]
	[summaries_dir SUMMARIES_DIR]
	[how_many_training_steps HOW_MANY_TRAINING_STEPS]
	[learning_rate LEARNING_RATE]
	[testing_percentage TESTING_PERCENTAGE]
	[validation_percentage VALIDATION_PERCENTAGE]
	[eval_step_interval EVAL_STEP_INTERVAL]
	[train_batch_size TRAIN_BATCH_SIZE]
	[test_batch_size TEST_BATCH_SIZE]
	[validation_batch_size VALIDATION_BATCH_SIZE]
	[print_misclassified_test_images] [model_dir MODEL_DIR]
	[bottleneck_dir BOTTLENECK_DIR]
	[final_tensor_name FINAL_TENSOR_NAME] [flip_left_right]
	[random_crop RANDOM_CROP] [random_scale RANDOM_SCALE]
	[random_brightness RANDOM_BRIGHTNESS]
	[architecture ARCHITECTURE]



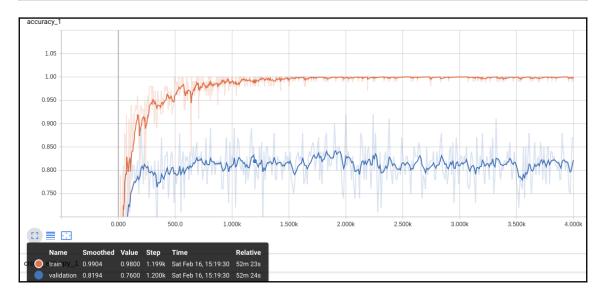

retrained_graph.pb17.1 MBModified: 27 January 2019 at 10:14 PM	retrained_graph.pb 87.5 MB Modified: 5 January 2019 at 9:36 PM
Add Tags	Add Tags
▼ General:	▼ General:
Kind: Document Size: 17,136,207 bytes (17.1 MB on disk) Where: Macintosh HD • Users • raz • anaconda3 • chapter3 • transformed-learning • trained_model_mobilenetv1- modified-dataset Created: 27 January 2019 at 10:14 PM Modified: 27 January 2019 at 10:14 PM Stationery pad Locked	Kind: Document Size: 87,458,742 bytes (92.3 MB on disk) Where: Macintosh HD • Users • raz • anaconda3 • chapter3 • transformed-learning • trained_model_inceptionv1original -dataset Created: 22 January 2019 at 10:08 PM Modified: 5 January 2019 at 9:36 PM Stationery pad Locked
▼ More Info:	▼ More Info:
INFO:tensorflow:2019-01-27 18:48:59.149569: INFO:tensorflow:2019-01-27 18:48:59.149738: INFO:tensorflow:2019-01-27 18:48:59.284896: INFO:tensorflow:2019-01-27 18:49:00.564238: INFO:tensorflow:2019-01-27 18:49:00.564402: INFO:tensorflow:2019-01-27 18:49:00.698488: INFO:tensorflow:Final test accuracy = 94.5% INFO:tensorflow:Froze 2 variables. INFO:tensorflow:Converted 2 variables to const	<pre>Step 3990: Cross entropy = 0.139672 Step 3990: Validation accuracy = 93.0% (N=1 Step 3999: Train accuracy = 95.0% Step 3999: Cross entropy = 0.131412 Step 3999: Validation accuracy = 97.0% (N=1 (N=1035)</pre>
	· · · · ·

```
INFO:tensorflow:2019-01-27 21:49:07.512191: Step 3990: Train accuracy = 97.0%
INFO:tensorflow:2019-01-27 21:49:07.512365: Step 3990: Cross entropy = 0.122777
INFO:tensorflow:2019-01-27 21:49:07.729347: Step 3990: Validation accuracy = 96.0% (N=100)
INFO:tensorflow:2019-01-27 21:49:09.603333: Step 3999: Train accuracy = 98.0%
INFO:tensorflow:2019-01-27 21:49:09.603515: Step 3999: Cross entropy = 0.122347
INFO:tensorflow:2019-01-27 21:49:09.814565: Step 3999: Validation accuracy = 94.0% (N=100)
INFO:tensorflow:Final test accuracy = 94.0% (N=1073)
INFO:tensorflow:Froze 2 variables.
INFO:tensorflow:Converted 2 variables to const ops.
```


INFO:tensorflow:2019-01-27 19:44:50.069255: Step 3990: Train accuracy = 99.0% INFO:tensorflow:2019-01-27 19:44:50.069425: Step 3990: Cross entropy = 0.035808 INFO:tensorflow:2019-01-27 19:44:50.158899: Step 3990: Validation accuracy = 99.0% (N= INFO:tensorflow:2019-01-27 19:44:50.926383: Step 3999: Train accuracy = 99.0% INFO:tensorflow:2019-01-27 19:44:50.926563: Step 3999: Cross entropy = 0.046513 INFO:tensorflow:2019-01-27 19:44:51.006902: Step 3999: Validation accuracy = 96.0% (N= INFO:tensorflow:Final test accuracy = 95.7% (N=1035) INFO:tensorflow:Froze 2 variables. INFO:tensorflow:Converted 2 variables to const ops.

```
INFO:tensorflow:2019-01-27 20:28:24.273400: Step 3990: Train accuracy = 100.0%
INFO:tensorflow:2019-01-27 20:28:24.273570: Step 3990: Cross entropy = 0.063349
INFO:tensorflow:2019-01-27 20:28:24.383185: Step 3990: Validation accuracy = 95.0% (N=1
INFO:tensorflow:2019-01-27 20:28:25.607641: Step 3999: Train accuracy = 99.0%
INFO:tensorflow:2019-01-27 20:28:25.607888: Step 3999: Cross entropy = 0.028579
INFO:tensorflow:2019-01-27 20:28:25.759702: Step 3999: Validation accuracy = 92.0% (N=1
INFO:tensorflow:Final test accuracy = 96.0% (N=1073)
INFO:tensorflow:Froze 2 variables.
INFO:tensorflow:Converted 2 variables to const ops.
```

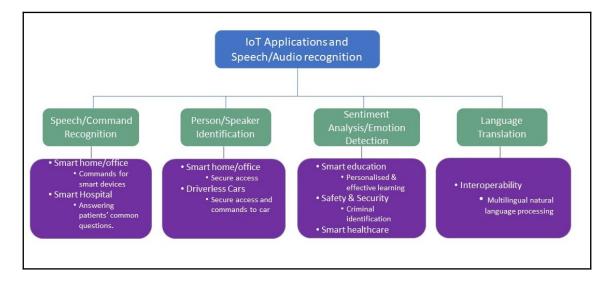

Mohammads-MacBook-Airtitansformed-learning rax5 python label_immeds_pwortstructure_graph_text. Mohammads-MacBook-Airtitansformed-learning rax5 python label_immeds_pwortstructure_graph_text. bels.txt --input_layer=input --output_layer=final_result --input_height=224 --input_width=224 --image=test/pothol22.jpg //sers/raz/maconda3/lb/python3.ds/site-packages/hbpy__init___pythot=24 //sers/raz/maconda3/lb/python3.ds/site-packages/hbpy__init___pythot=24 from _conv import register_converters as _register_converters 2019-01-28 18:02:16.108124: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA pothole 0.99144566 potnole 0.99144566 shadow 0.006273513 roadmarking 0.0022471682 manhole 2.2895005e-05 pavement 1.0783668e-05 pavement 1.0783568e-06 Mohammads-MacBook-Air:transformed-learning raz\$ python label_image.py --graph=trained_model_mobilenetsv1-original-dataset/retrained_graph.pb --labels=trained_model_mobilenetsv1-o labels.txt --input_layer=input --output_layer=final_result --input_height=224 --input_mith=224 --image=test/pothol2.jpg //users/raz/maconda3/lib/yhtho3.6/site-packages/hpp/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. ted as `np.float64 == np.dtype(float).type`. from __conv import register_converters as _register_converters 2019-01-28 18:08:00.36422: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA mothol B. 0327071 pothole 0.9827071 shadow 0.014883991 siadum 0.024003971 roadmarking 0.0023621535 manhole 3.5012974α-05 pavement 1.1739314α-05 Mohammads-MacBook-Air:transformed-learning raz\$ ∭

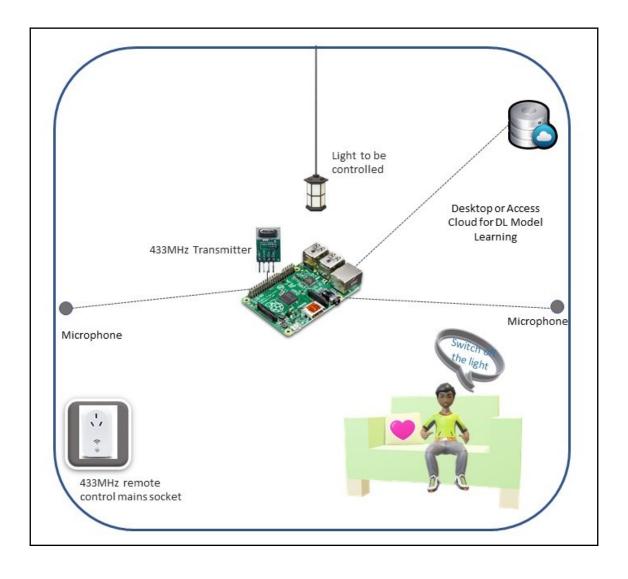


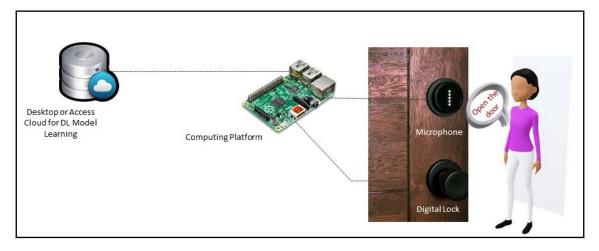
8	<u>-</u>	pi@raspberrypi: ~/ch.	🗾 pi@raspberrypi: ~	[pi]
		pi@raspberrypi: ~	/chapter3	_ □
File Edit Ta	bs Help			
final_trainin	g_ops/Wx_pl	us_b/add		
final_result				
manhole (scor pothole (scor shadow (score roadmarking (pavement (sco pi@raspberryp	e = 0.00928 = 0.00080) score = 0.0 re = 0.0002) 0066) 3) 3 \$ python3 image_la	pelling.py test/manhole	e1.jpeg
		pi@raspberrypi: ~,		>
File Edit Tal	os Help	P.C. P.C. Market		
	0128462 55e-05 i: ~/chapter3 nput_height= 718 128 .000854359	3 \$ python3 label_ima =224input_width=22	ge.pyimage test/potH 4	hole3.jpggr

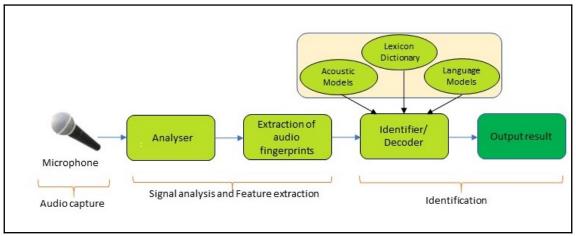
manhole 3.44682e-06 pi@raspberrypi:~/chapter3 \$ []

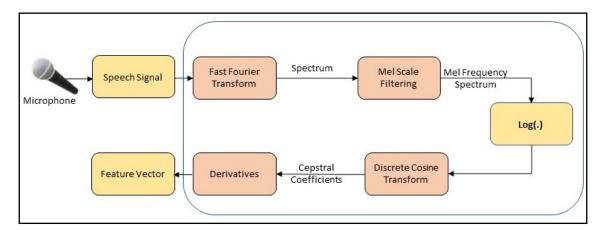
۲			>_	∑pi@ras	pberrypi:	:~/ch	>_	pi@ras	spberryp	i: ~		cha	pte
r				pi@	@raspber	rypi: ~/	chap	oter3			-		×
File	Edit	Tabs	Help										
t_heig manhol shadow roadma paveme pothol pi@ras raph t etsv1/	ght=22 le 0.9 w 0.00 arking ent 1 le 8.2 s pber n traine /retra	24i 999331 905934 g 7.50 .36896 119276 rypi:~ ed_mod ained_	input_ 19 0034e- 6e-08 e-09 ./chap lel_mo _label:	s.txtinp width=224 95 ter3 \$ pyth bilenetsv1/ s.txtinp width=224	non3 labe /retraine	el_imag ed_grap	je.py	/imaç Dlabe	je test/	/manhole	e1.jpeg del_mob	 ile	g

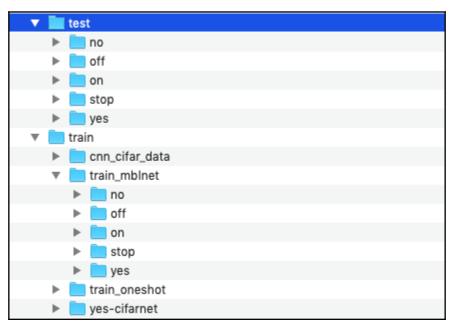

INFO:tensorflow:2019-02-16 15:22:41.199519: Step 3980: Train accuracy = 100.0% INFO:tensorflow:2019-02-16 15:22:41.199691: Step 3980: Cross entropy = 0.014032 INFO:tensorflow:2019-02-16 15:22:41.252618: Step 3980: Validation accuracy = 81.0% (N=100) INFO:tensorflow:2019-02-16 15:22:41.787808: Step 3990: Train accuracy = 100.0% INFO:tensorflow:2019-02-16 15:22:41.787986: Step 3990: Cross entropy = 0.016459 INFO:tensorflow:2019-02-16 15:22:41.846011: Step 3990: Validation accuracy = 87.0% (N=100) INFO:tensorflow:2019-02-16 15:22:42.326762: Step 3999: Train accuracy = 100.0% INFO:tensorflow:2019-02-16 15:22:42.326932: Step 3999: Cross entropy = 0.015315 INFO:tensorflow:2019-02-16 15:22:42.392484: Step 3999: Validation accuracy = 87.0% (N=100) INFO:tensorflow:2019-02-16 15:22:42.392484: Step 3999: Validation accuracy = 87.0% (N=100) INFO:tensorflow:2019-02-16 15:22:42.392484: Step 3999: Validation accuracy = 87.0% (N=100) INFO:tensorflow:Final test accuracy = 77.5% (N=271)

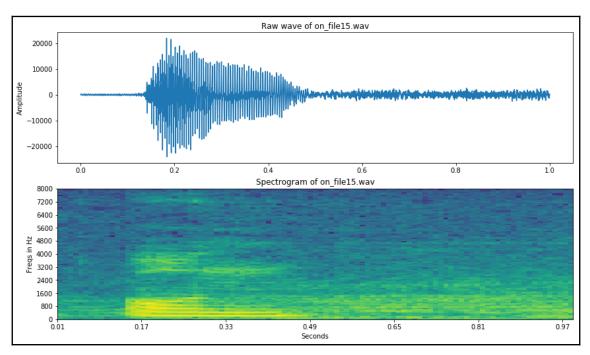


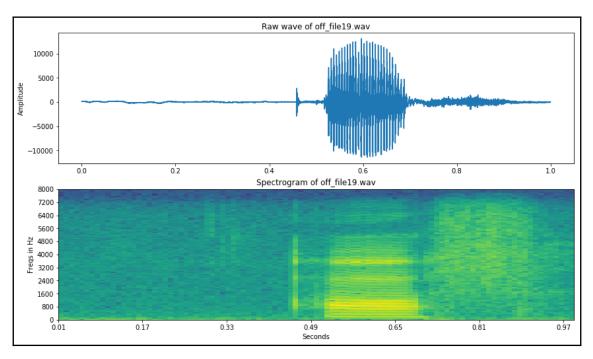

Mohammads-MacBook-Air:transformed-learning raz\$ python label_image.pygraph=trained_model_mobilenetv1-garbage-dataset/retr
ls.txtinput_layer=inputoutput_layer=final_resultinput_height=224input_width=224image=test-garbage/glass3.jpeg
/Users/raz/anaconda3/lib/python3.6/site-packages/h5py/initpy:36: FutureWarning: Conversion of the second argument of is
<pre>ted as `np.float64 == np.dtype(float).type`.</pre>
fromconv import register_converters as _register_converters
2019-02-16 16:05:37.535686: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this Te
glass 0.9997981
plastic 0.0001634804
trash 1.3350626e-05
paper 8.399338e-06
cardboard 8.345092e-06
Mohammads-MacBook-Air:transformed-learning raz\$ python label_image.pygraph=trained_model_mobilenetv1-garbage-dataset/retr
ls.txtinput_layer=inputoutput_layer=final_resultinput_height=224input_width=224image=test-garbage/glass3.jpeg

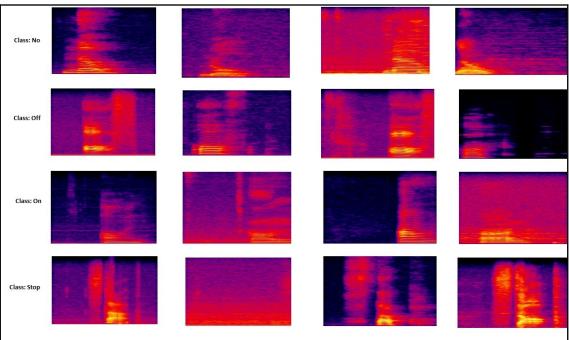

ls.txt --input_layer=input --output_layer=final_result --input_height=224 --input_width=224 --image=test-garbage/tin1.jpeg
/Users/raz/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of iss
ted as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
2019-02-16 15:59:01.822456: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this Ten
metal 0.9152763
paper 0.07105096
cardboard 0.013308621
plastic 0.00035772196
glass 2.888089e-07

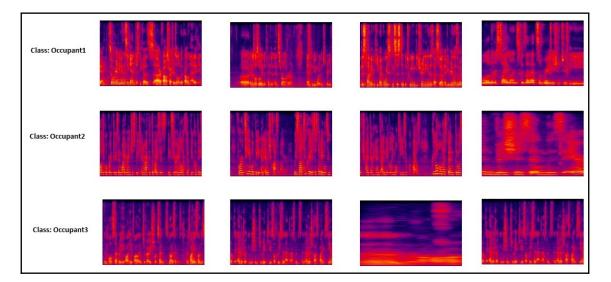

Chapter 4: Audio/Speech/Voice Recognition in IoT



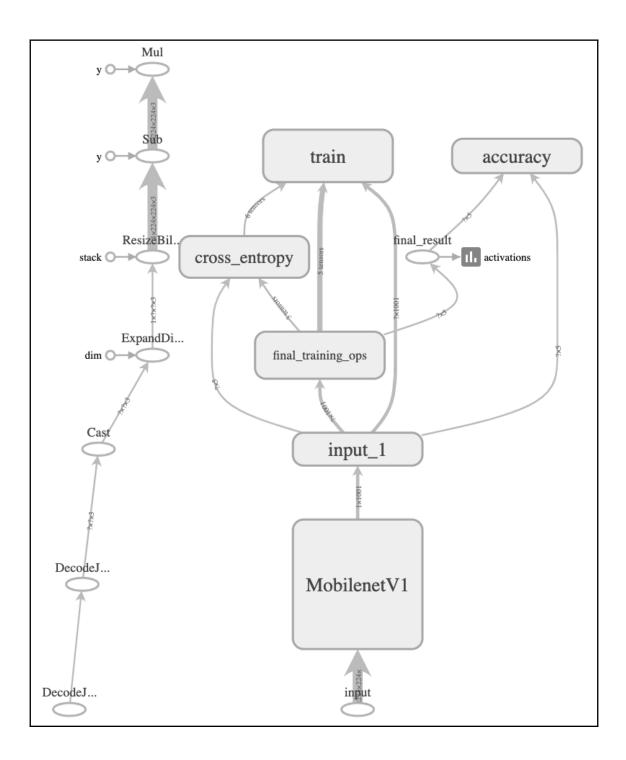


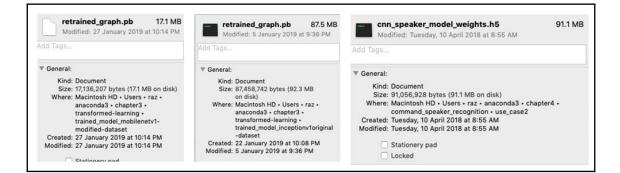


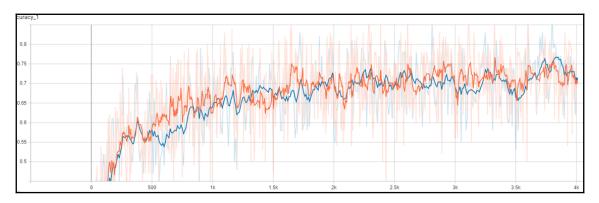




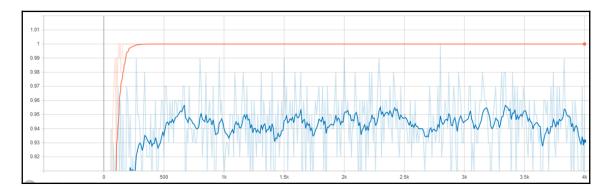
V	test_3occupants
	ccupant1
	occupant2
	occupant3
▼	test_5occupants
	occupant1
	occupant4
•	train_3occupants
	occupant1
	occupant2
	occupant3
•	train_5occupants
	occupant1
	occupant2
	occupant3
	occupant4
	occupant5



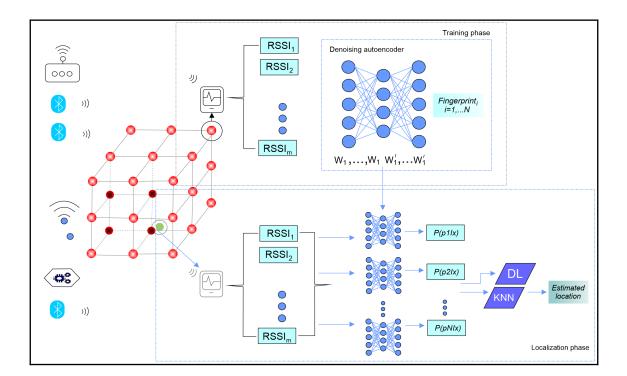




usage:	retrain.py	[-h] [image_dir IMAGE_DIR] [output_graph OUTPUT_GRAPH] [intermediate_output_graphs_dir INTERMEDIATE_OUTPUT_GRAPHS_DIR]
		[intermediate_store_frequency INTERMEDIATE_STORE_FREQUENCY]
		[output_labels OUTPUT_LABELS]
		[summaries_dir SUMMARIES_DIR]
		[how_many_training_steps_HOW_MANY_TRAINING_STEPS]
		[learning_rate LEARNING_RATE]
		[testing_percentage TESTING_PERCENTAGE]
		[validation_percentage VALIDATION_PERCENTAGE]
		<pre>[eval_step_interval EVAL_STEP_INTERVAL]</pre>
		[train_batch_size TRAIN_BATCH_SIZE]
		[test_batch_size TEST_BATCH_SIZE]
		[validation_batch_size VALIDATION_BATCH_SIZE]
		[print_misclassified_test_images] [model_dir MODEL_DIR]
		[bottleneck_dir BOTTLENECK_DIR]
		[final_tensor_name FINAL_TENSOR_NAME] [flip_left_right]
		[random_crop RANDOM_CROP] [random_scale RANDOM_SCALE]
		[random_brightness RANDOM_BRIGHTNESS]
		[architecture ARCHITECTURE]

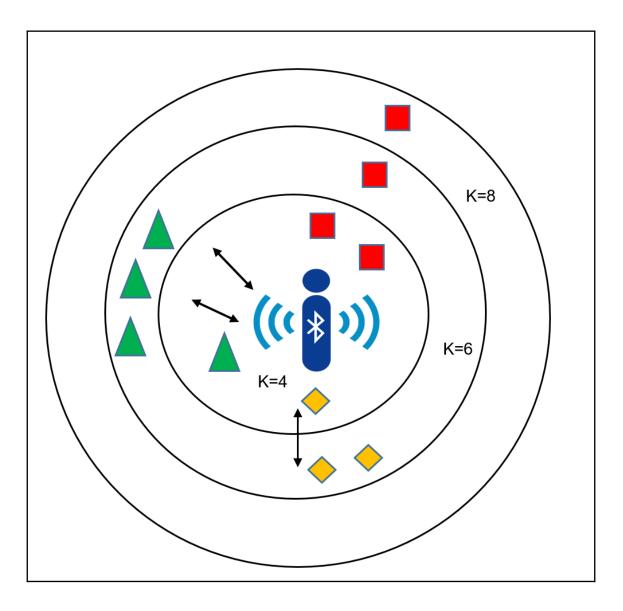


Command Prompt	
INFO:tensorflow:2019-05-19 15:11:02.719906: Step 3920: Validation accuracy = 67.0% (N=100)	^
INF0:tensorflow:2019-05-19 15:11:03.547944: Step 3930: Train accuracy = 69.0%	
INFO:tensorflow:2019-05-19 15:11:03.547944: Step 3930: Cross entropy = 1.082193	
INFO:tensorflow:2019-05-19 15:11:03.626063: Step 3930: Validation accuracy = 77.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:04.516587: Step 3940: Train accuracy = 84.0%	
INFO:tensorflow:2019-05-19 15:11:04.516587: Step 3940: Cross entropy = 0.712184	
INFO:tensorflow:2019-05-19 15:11:04.594707: Step 3940: Validation accuracy = 73.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:05.408637: Step 3950: Train accuracy = 85.0%	
INFO:tensorflow:2019-05-19 15:11:05.408637: Step 3950: Cross entropy = 0.566925	
INFO:tensorflow:2019-05-19 15:11:05.518001: Step 3950: Validation accuracy = 77.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:06.318512: Step 3960: Train accuracy = 78.0%	
INFO:tensorflow:2019-05-19 15:11:06.318512: Step 3960: Cross entropy = 0.747383	
INFO:tensorflow:2019-05-19 15:11:06.396632: Step 3960: Validation accuracy = 70.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:07.193423: Step 3970: Train accuracy = 79.0%	
INFO:tensorflow:2019-05-19 15:11:07.193423: Step 3970: Cross entropy = 0.794154	
INFO:tensorflow:2019-05-19 15:11:07.271541: Step 3970: Validation accuracy = 74.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:08.084003: Step 3980: Train accuracy = 68.0%	
INFO:tensorflow:2019-05-19 15:11:08.084003: Step 3980: Cross entropy = 1.074563	
INFO:tensorflow:2019-05-19 15:11:08.220279: Step 3980: Validation accuracy = 73.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:09.063962: Step 3990: Train accuracy = 71.0%	
INFO:tensorflow:2019-05-19 15:11:09.063962: Step 3990: Cross entropy = 0.928895	
INFO:tensorflow:2019-05-19 15:11:09.142080: Step 3990: Validation accuracy = 62.0% (N=100)	
INFO:tensorflow:2019-05-19 15:11:09.954521: Step 3999: Train accuracy = 77.0%	
INFO:tensorflow:2019-05-19 15:11:09.954521: Step 3999: Cross entropy = 0.845275	
INFO:tensorflow:2019-05-19 15:11:10.032663: Step 3999: Validation accuracy = 69.0% (N=100)	
INFO:tensorflow:Final test accuracy = 72.0% (N=3702)	
INFO:tensorflow:Froze 2 variables.	
INFO:tensorflow:Converted 2 variables to const ops.	
(tf-gpu) C:\Anaconda3\Book-DL-IoT\chapter4\DL-for-Speech&Speaker\use-case-1new≻cd	~

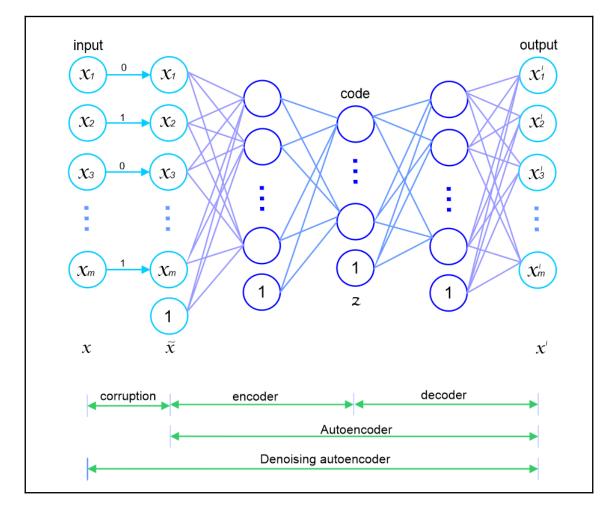


INFO:tensorflow:2019-05-19	15:37:30.206873:	Step 3900:	Validation accuracy = 91.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19	15:37:31.238052:	Step 3910:	Cross entropy = 0.002250	
			Validation accuracy = 91.0%	(N=100)
INFO:tensorflow:2019-05-19	15:37:32.237980:	Step 3920:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-19	15:37:32.237980:	Step 3920:	Cross entropy = 0.001900	
			Validation accuracy = 95.0%	(N=100)
INFO:tensorflow:2019-05-19	15:37:33.206647:	Step 3930:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-19	15:37:33.206647:	Step 3930:	Cross entropy = 0.001575	
			Validation accuracy = 96.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19	15:37:34.175381:	Step 3940:	Validation accuracy = 92.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 95.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 92.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 94.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 96.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 93.0%	(N=100)
INFO:tensorflow:2019-05-19				
INFO:tensorflow:2019-05-19				
			Validation accuracy = 96.0%	(N=100)
INFO:tensorflow:Final test		(N=32)		
INFO:tensorflow:Froze 2 va				
INFO:tensorflow:Converted	2 variables to co	nst ops.		

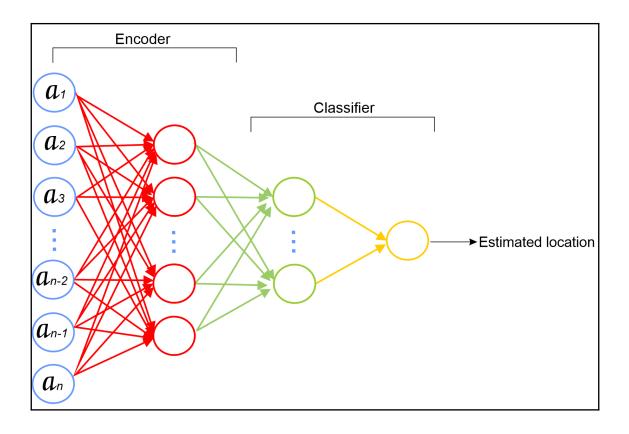
(tf-gpu) C:\Anaconda3\Book-DL-IoT\chapter4\DL-for-Speech&Speaker\use-case-2new>

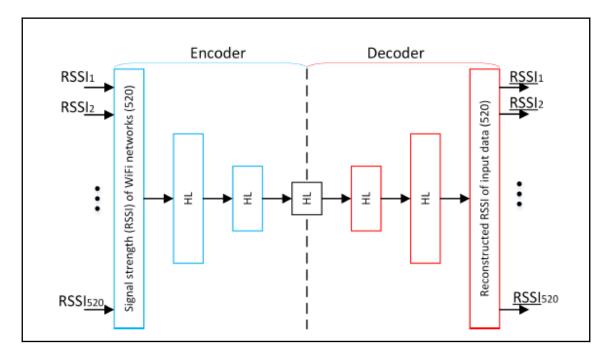


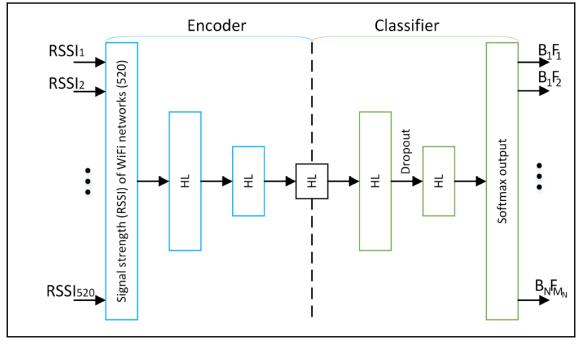
Chapter 5: Indoor Localization in IoT $\Omega = \{(\mathbf{f}_1, \mathbf{p}_1), (\mathbf{f}_2, \mathbf{p}_2), \dots, (\mathbf{f}_N, \mathbf{p}_N)\}$



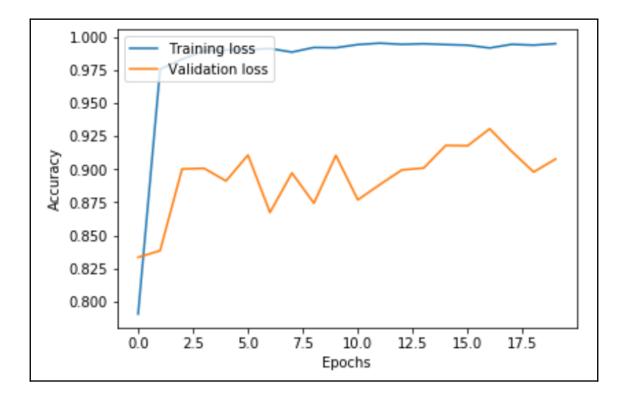
 $d(X_i, x)$ d_i

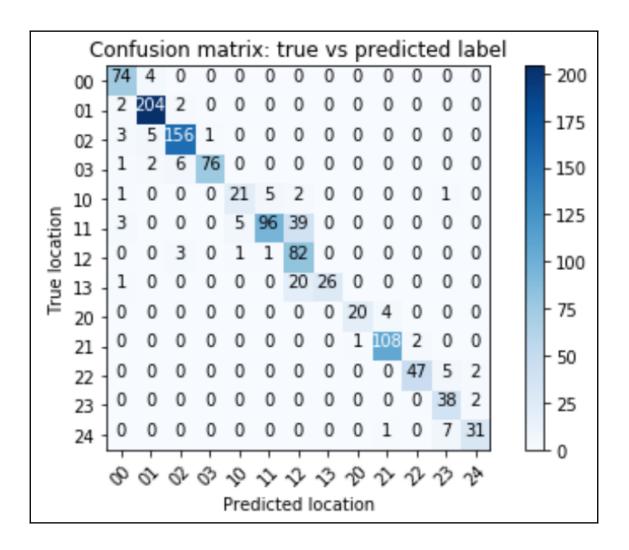

 d_i Y_i i \sub



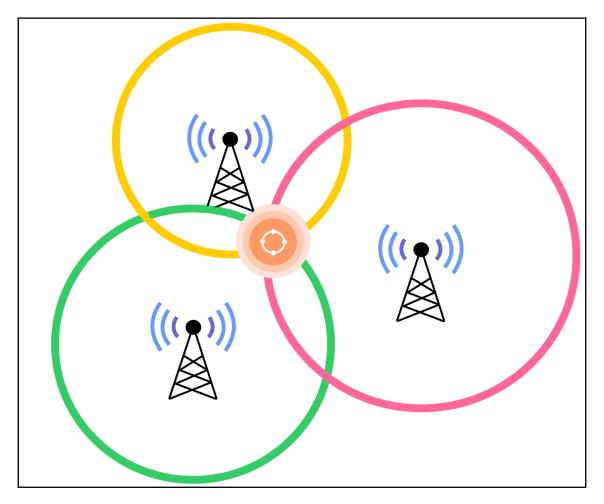

g(f(x)) = o

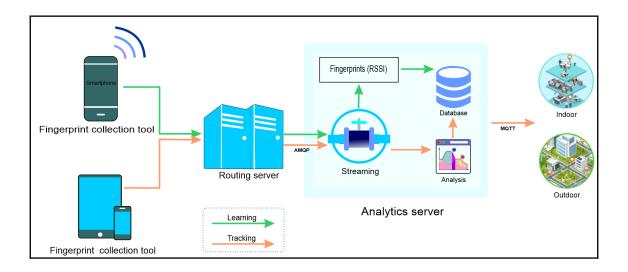
$\mathbf{f} = egin{bmatrix} w_1, w_2, \dots, w_l, w_1', w_2', \dots, w_l' \end{bmatrix} \ \mathbf{t}$

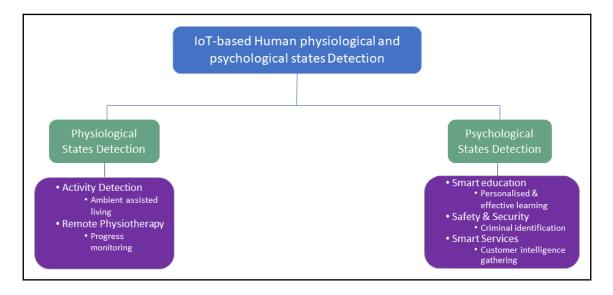


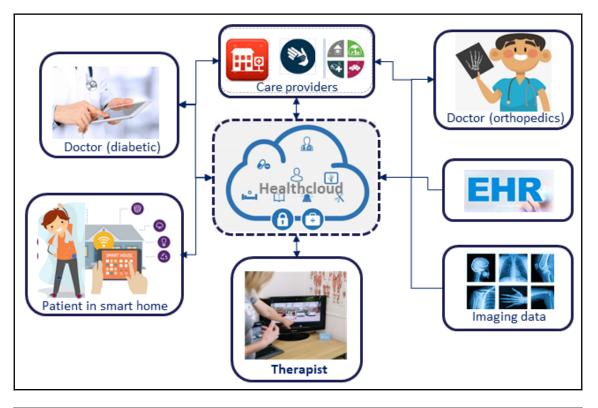


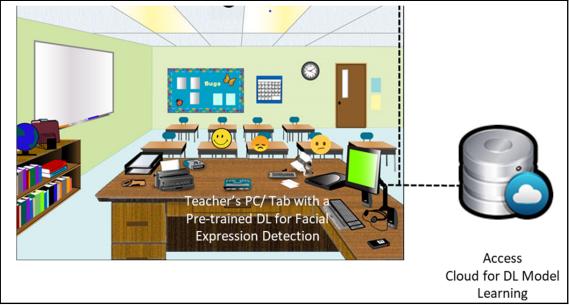
Dataset info		Variables types	6
Number of variables Number of observations Total Missing (%) Total size in memory Average record size in memory	529 19937 0.0% 80.5 MiB 4.1 KiB	Numeric Categorical Boolean Date Text (Unique) Rejected	417 0 38 0 0 74
Warnings		Unsupported	0
BUILDINGID is highly correlated with FLOOR has 4369 / 21.9% zeros Zeros WAP001 is highly skewed (γ 1 = -33.24 WAP002 is highly skewed (γ 1 = -32.35 WAP003 has constant value 100 Reject WAP004 has constant value 100 Reject WAP005 is highly skewed (γ 1 = -22.26 WAP016 is highly correlated with WAP021 is highly skewed (γ 1 = -23.15 WAP022 is highly skewed (γ 1 = -23.15 WAP054 is highly correlated with WAP055 is highly skewed (γ 1 = -24.52 WAP056 is highly skewed (γ 1 = -24.52 WAP081 is highly correlated with WAP020 WAP056 is highly skewed (γ 1 = -24.52 WAP081 is highly correlated with WAP020 WAP086 is highly skewed (γ 1 = -22.29 WAP081 is highly skewed (γ 1 = -22.29 WAP081 is highly skewed (γ 1 = -22.29 WAP084 has constant value 100 Reject WAP093 has constant value 100 Reject WAP095 has constant value 100	b) Skewed (55) Skewed (56) Skewed (54) Skewed (54) Skewed (54) Skewed (54) Skewed (55) ($\rho = 0.92829$) Rejected (6) Skewed (29) Skewed (29) Skewed (29) Skewed (29) Skewed (29) Skewed (29) Skewed (29) Skewed (20) Skewed (2		

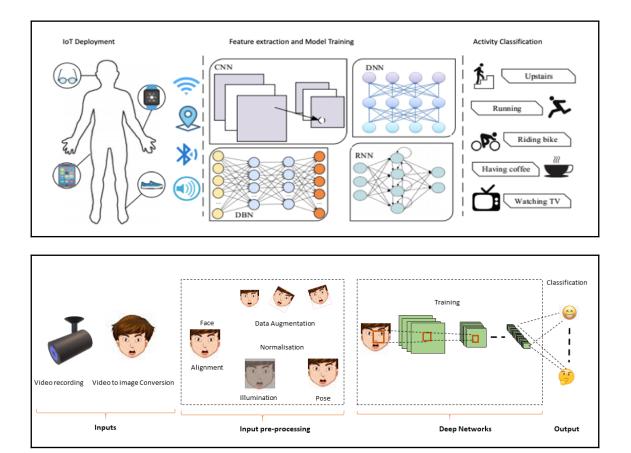

Layer (type)	Output Shape	Param #
dense_28 (Dense)	(None, 256)	133376
dense_29 (Dense)	(None, 128)	32896
dense_30 (Dense)	(None, 64)	8256
dense_31 (Dense)	(None, 128)	8320
dense_32 (Dense)	(None, 256)	33024
dense_33 (Dense)	(None, 520)	133640
Total params: 349,512 Trainable params: 349,512 Non-trainable params: 0		

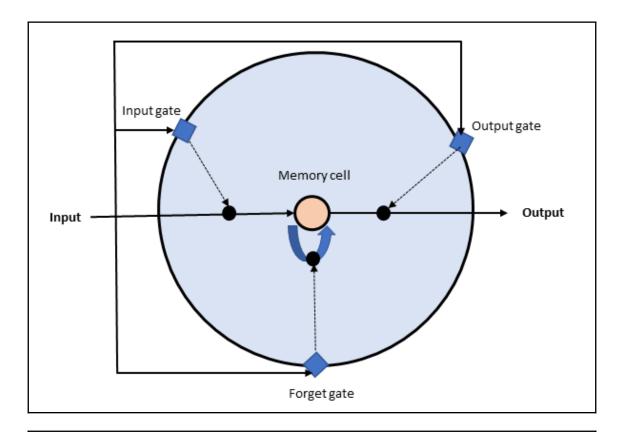

	precision	recall	f1-score	support
0	0.87	0.95	0.91	78
1	0.95	0.98	0.96	208
2	0.93	0.95	0.94	165
3	0.99	0.89	0.94	85
4	0.78	0.70	0.74	30
5	0.94	0.67	0.78	143
6	0.57	0.94	0.71	87
7	1.00	0.55	0.71	47
8	0.95	0.83	0.89	24
9	0.96	0.97	0.96	111
10	0.96	0.87	0.91	54
11	0.75	0.95	0.84	40
12	0.89	0.79	0.84	39
avg / total	0.90	0.88	0.88	1111

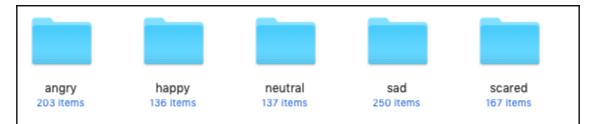

 $\boldsymbol{\mathcal{N}}$

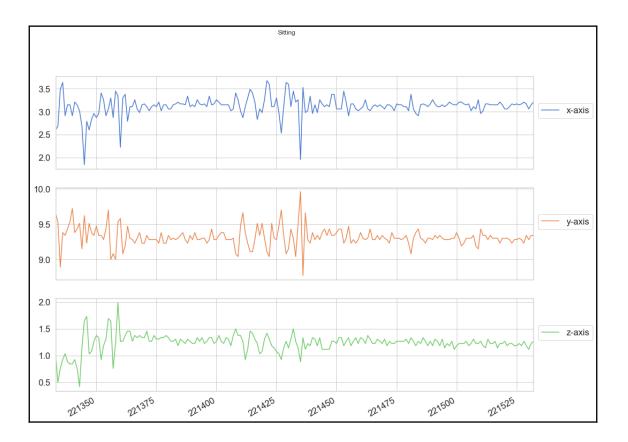


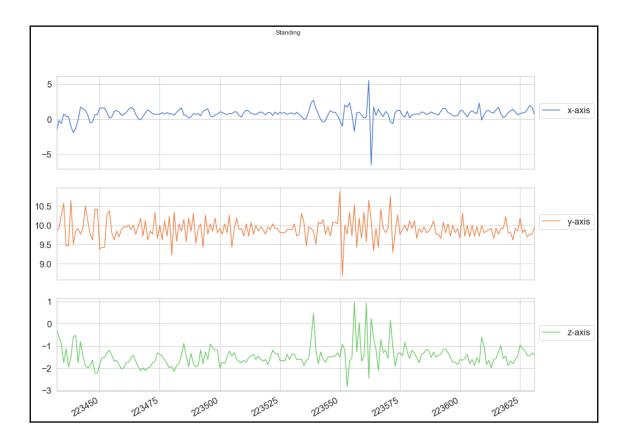

 $F_{RSSI} = (RSSI_1, RSSI_2, RSSI_3, \dots, RSSI_n)$

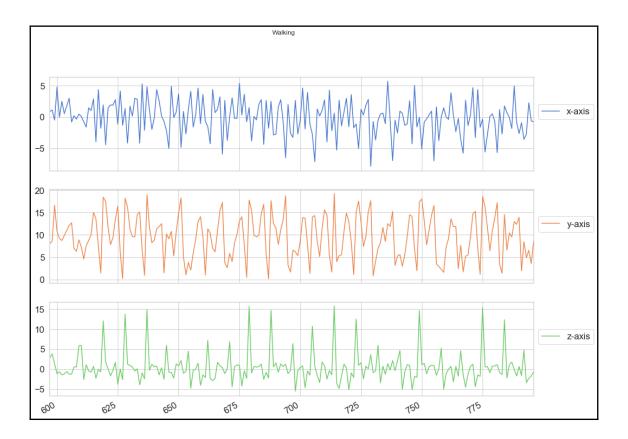


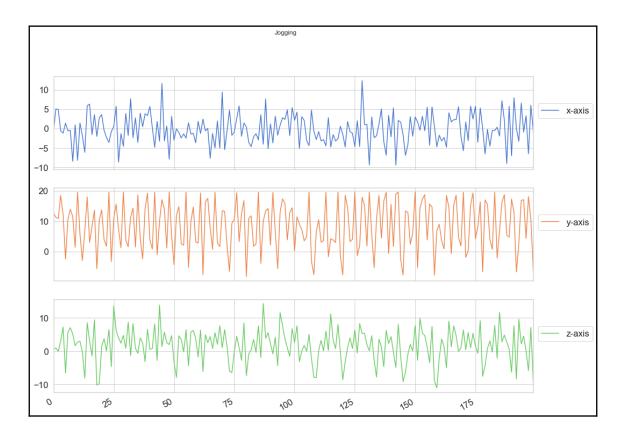

Chapter 6: Physiological and Psychological State Detection in IoT

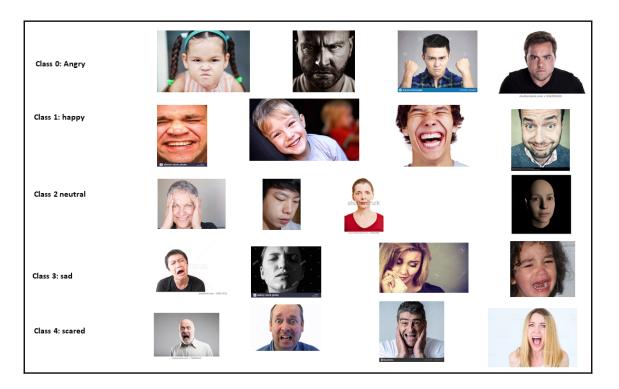


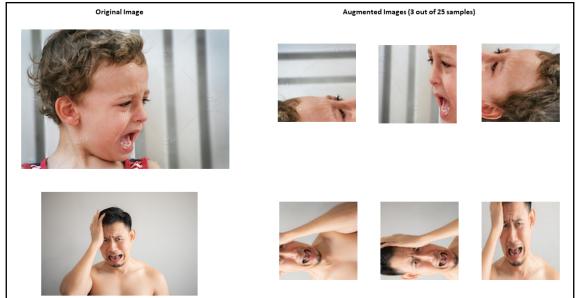

columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
df = pd.read_csv('data/WISDM_ar_v1.1_raw.txt', header = None, names = columns)
df = df.dropna()

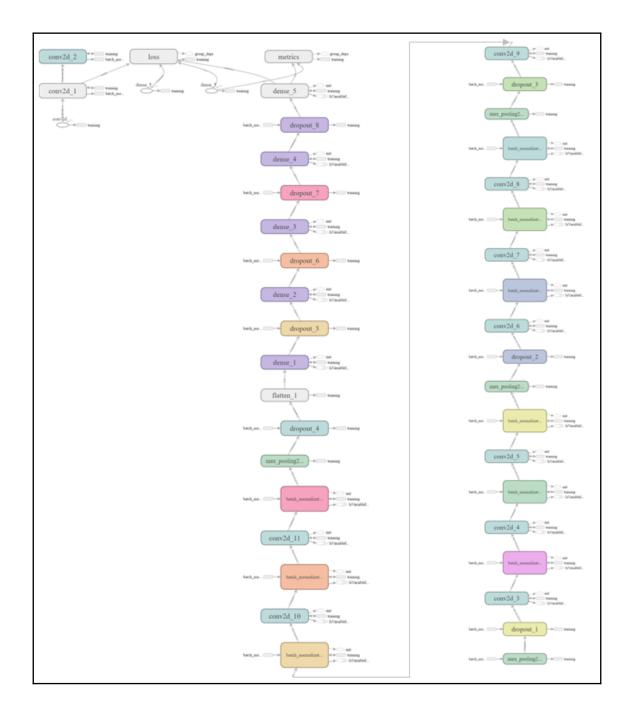

df.head()

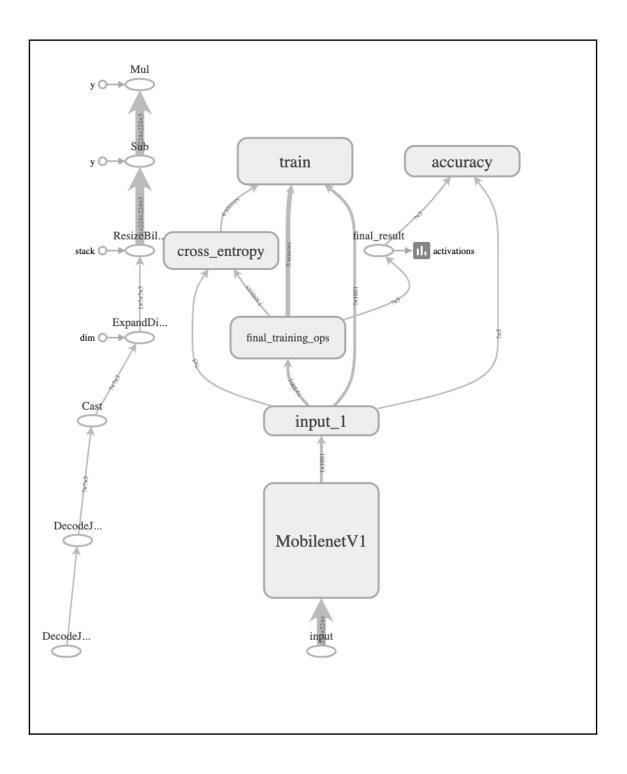

	user	activity	timestamp	x-axis	y-axis	z-axis
0	33	Jogging	49105962326000	-0.694638	12.680544	0.503953
1	33	Jogging	49106062271000	5.012288	11.264028	0.953424
2	33	Jogging	49106112167000	4. <mark>9</mark> 03325	10.882658	-0.081722
3	33	Jogging	49106222305000	-0.612916	18.496431	3.023717
4	33	Jogging	49106332290000	-1.184970	12.108489	7.205164

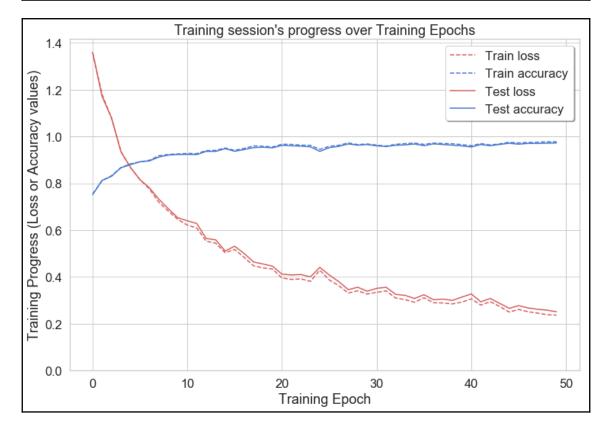

emotion	pixels	Usage
	0 70 80 82 72 58 58 60 63 54 58 60 48 89 115 121 119 115 110 98 91 84 84 90 99 110 126 143 153 158 171	
	0 151 150 147 155 148 133 111 140 170 174 182 154 153 164 173 178 185 185 189 187 186 193 194 185 183	Training
	2 231 212 156 164 174 138 161 173 182 200 106 38 39 74 138 161 164 179 190 201 210 216 220 224 222 21	Training
	4 24 32 36 30 32 23 19 20 30 41 21 22 32 34 21 19 43 52 13 26 40 59 65 12 20 63 99 98 98 111 75 62 41 73 3	1 Training
	6 4 0 0 0 0 0 0 0 0 0 0 3 15 23 28 48 50 58 84 115 127 137 142 151 156 155 149 153 152 157 160 162 159	
	2 55 55 55 55 55 54 60 68 54 85 151 163 170 179 181 185 188 188 191 196 189 194 198 197 195 194 190 19	Training
	4 20 17 19 21 25 38 42 42 46 54 56 62 63 66 82 108 118 130 139 134 132 126 113 97 126 148 157 161 155 1	
	3 77 78 79 79 78 75 60 55 47 48 58 73 77 79 57 50 37 44 56 70 80 82 87 91 86 80 73 66 54 57 68 69 68 68 49	Training
	3 85 84 90 121 101 102 133 153 153 169 177 189 195 199 205 207 209 216 221 225 221 220 218 222 223 21	Training
	2 255 254 255 254 254 179 122 107 95 124 149 150 169 178 179 179 181 181 184 190 191 191 193 190 190	Training
	0 30 24 21 23 25 25 49 67 84 103 120 125 130 139 140 139 148 171 178 175 176 174 180 180 178 178 182 1	Training
	6 39 75 78 58 58 45 49 48 103 156 81 45 41 38 49 56 60 49 32 31 28 52 83 81 78 75 62 31 18 19 19 20 17 20	Training
	6 219 213 206 202 209 217 216 215 219 218 223 230 227 227 233 235 234 236 237 238 234 226 219 212 204	
	6 148 144 130 129 119 122 129 131 139 153 140 128 139 144 146 143 132 133 134 130 140 142 150 152 150	Training
	3 4 2 13 41 56 62 67 87 95 62 65 70 80 107 127 149 153 150 165 168 177 187 176 167 152 128 130 149 149	Training
	5 107 107 109 109 109 109 110 101 123 140 144 144 149 153 160 161 161 167 168 169 172 172 173 175 170	Training

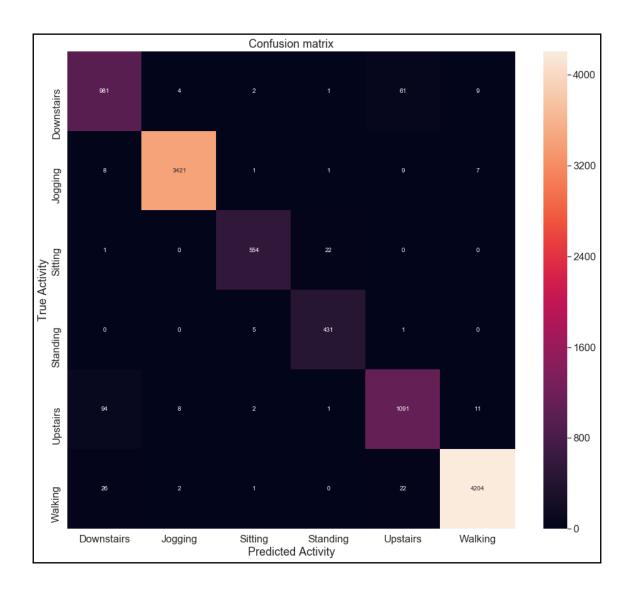


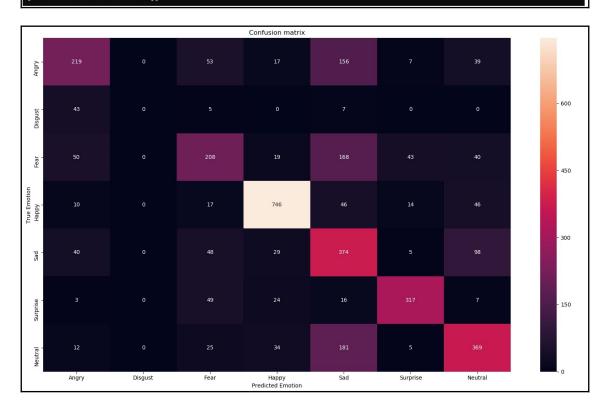




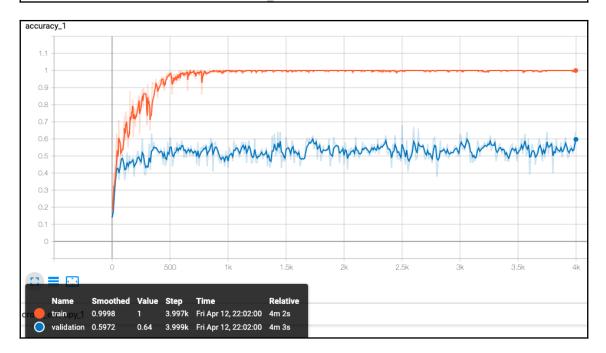


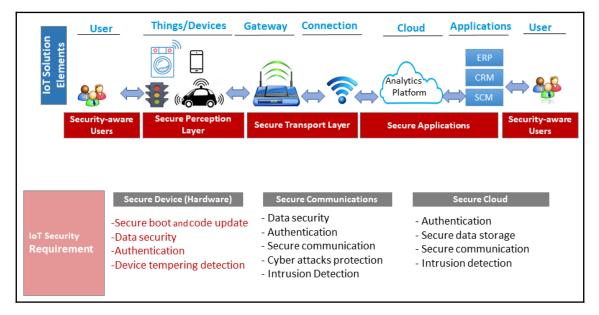


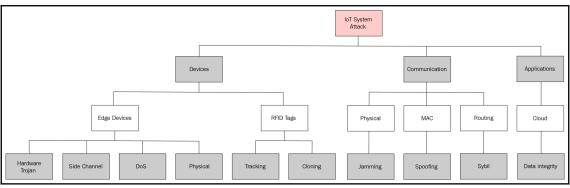


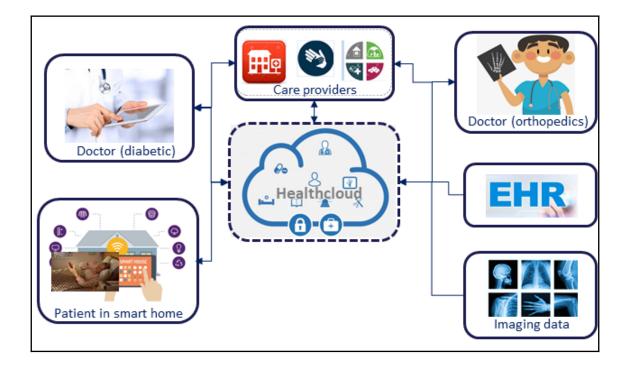


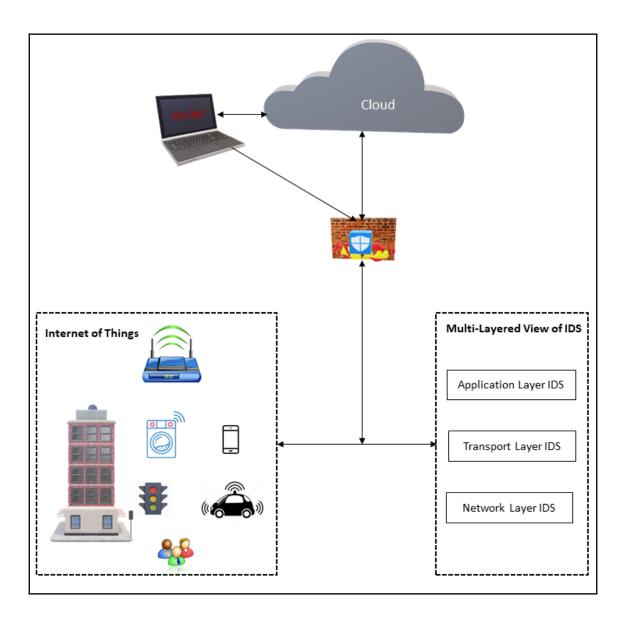
fer2013_trained.hdf5 2.6 MB Modified: Friday, 25 January 2019 at 12:49 AM Add Tags	trained-mobilenet 17.1 MB Modified: Saturday, 13 April 2019 at 3:27 AM Add Tags
 General: Kind: Document Size: 2,600,080 bytes (2.6 MB on disk) Where: Macintosh HD - Users - raz - anaconda3 - chapter6 - use-case-2 - FER-2013 - trained_models Created: Friday, 25 January 2019 at 12:49 AM Modified: Friday, 25 January 2019 at 12:49 AM Stationery pad Locked 	 General: Kind: Folder Size: 17,144,280 bytes (17.1 MB on disk) for 3 items Where: Macintosh HD • Users • raz • anaconda3 • chapter6 • use-case-2 • Emotion-recognitio Created: Saturday, 13 April 2019 at 1:22 AM Modified: Saturday, 13 April 2019 at 3:27 AM Shared folder
▼ More Info:	Locked

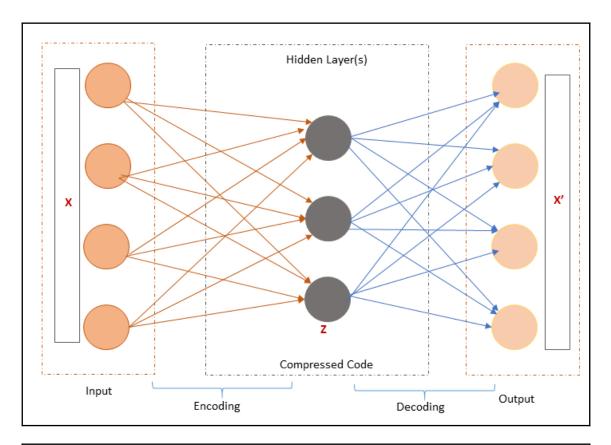


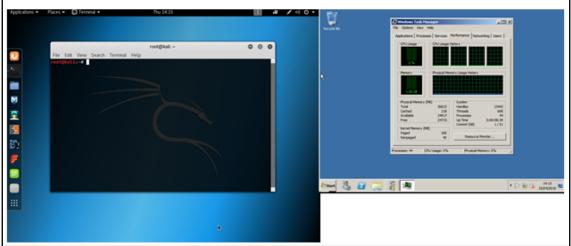

🚾 Command Prompt - python CNN-FER2013.py
Epoch 00073: val_loss did not improve from 1.14731 Epoch 74/100
25838/25838 [============================] - 32s 1ms/step - loss: 0.5493 - acc: 0.8155 - val_loss: 1.4115 - val_acc: 0.6198
Epoch 00074: val_loss did not improve from 1.14731 Epoch 75/100
25838/25838 [===================================
Epoch 00075: val_loss did not improve from 1.14731 Epoch 76/100
25838/25838 [========================] - 32s 1ms/step - loss: 0.5345 - acc: 0.8224 - val_loss: 1.4075 - val_acc: 0.6283
Epoch 00076: val_loss did not improve from 1.14731 Epoch 77/100
25838/25838 [=========================] - 32s 1ms/step - loss: 0.5273 - acc: 0.8265 - val_loss: 1.4189 - val_acc: 0.6294
Epoch 00077: val_loss did not improve from 1.14731 Epoch 78/100
25838/25838 [==========================] - 32s 1ms/step - loss: 0.5047 - acc: 0.8319 - val_loss: 1.4780 - val_acc: 0.6291
Epoch 00078: val_loss did not improve from 1.14731 Accuracy score = 0.6221788799108386
$[[219 \ 0 \ 53 \ 17 \ 156 \ 7 \ 39]$
Č 43 0 5 0 7 0 0j [50 0 208 19 168 43 40]
$\begin{bmatrix} 10 & 0 & 17 & 746 & 46 & 14 & 46 \end{bmatrix}$ $\begin{bmatrix} 40 & 0 & 48 & 29 & 374 & 5 & 98 \end{bmatrix}$
$\begin{bmatrix} 3 & 0 & 49 & 29 & 5/4 & 5 & 36 \end{bmatrix}$
[12 0 25 34 181 5 369]]

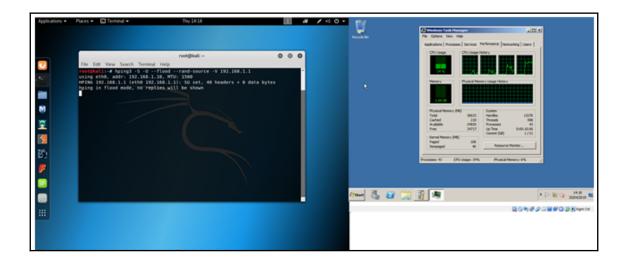


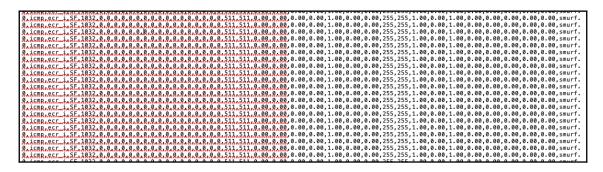

INFO:tensorflow:2019-04-12 22:01:57.172090: Step 3950: Validation accuracy = 56.0% (N=10 INFO:tensorflow:2019-04-12 22:01:57.717492: Step 3960: Train accuracy = 100.0% INFO:tensorflow:2019-04-12 22:01:57.717706: Step 3960: Cross entropy = 0.025000 INFO:tensorflow:2019-04-12 22:01:57.771880: Step 3960: Validation accuracy = 56.0% (N=10 INFO:tensorflow:2019-04-12 22:01:58.327694: Step 3970: Train accuracy = 100.0% INFO:tensorflow:2019-04-12 22:01:58.327912: Step 3970: Cross entropy = 0.019784 INFO:tensorflow:2019-04-12 22:01:58.382137: Step 3970: Validation accuracy = 51.0% (N=10 INFO:tensorflow:2019-04-12 22:01:58.960856: Step 3980: Train accuracy = 100.0% INFO:tensorflow:2019-04-12 22:01:58.961076: Step 3980: Cross entropy = 0.019178 INFO:tensorflow:2019-04-12 22:01:59.013968: Step 3980: Validation accuracy = 54.0% (N=10 INFO:tensorflow:2019-04-12 22:01:59.570253: Step 3990: Train accuracy = 100.0% INFO:tensorflow:2019-04-12 22:01:59.570446: Step 3990: Cross entropy = 0.024673 INFO:tensorflow:2019-04-12 22:01:59.623518: Step 3990: Validation accuracy = 62.0% (N=10 INFO:tensorflow:2019-04-12 22:02:00.125422: Step 3999: Train accuracy = 100.0% INFO:tensorflow:2019-04-12 22:02:00.125639: Step 3999: Cross entropy = 0.019731 INFO:tensorflow:2019-04-12 22:02:00.180063: Step 3999: Validation accuracy = 64.0% (N=10 INFO:tensorflow:Final test accuracy = 48.4% (N=95) WARNING:tensorflow:From retrain.py:838: convert_variables_to_constants (from tensorflow. Instructions for updating: Use tf.compat.v1.graph_util.convert_variables_to_constants WARNING:tensorflow:From /Users/raz/anaconda3/lib/python3.7/site-packages/tensorflow/pyth ted and will be removed in a future version. Instructions for updating: Use tf.compat.v1.graph_util.extract_sub_graph INFO:tensorflow:Froze 2 variables. INFO:tensorflow:Converted 2 variables to const ops.

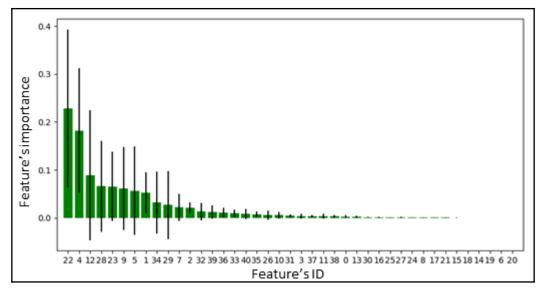


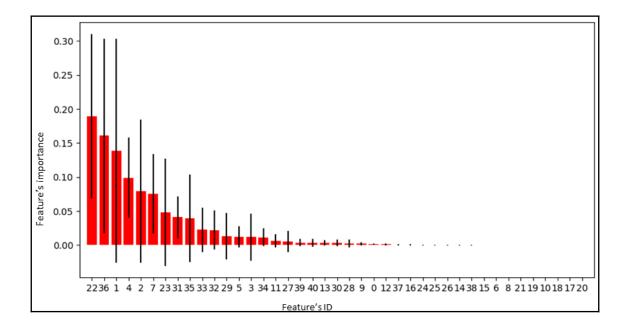

Chapter 7: IoT Security

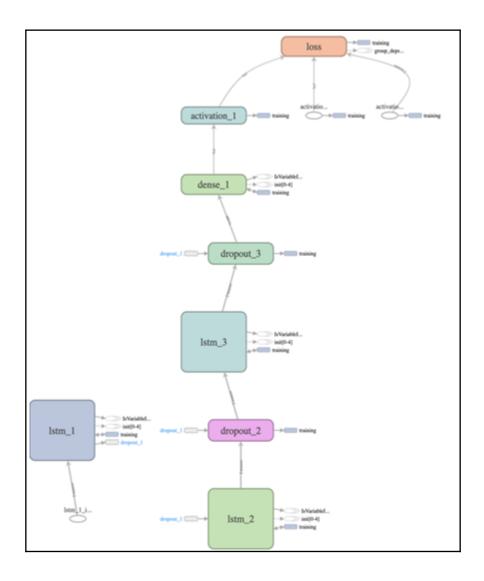




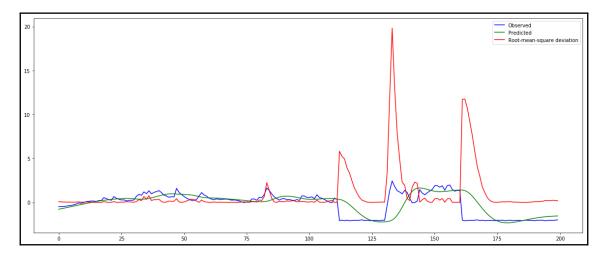


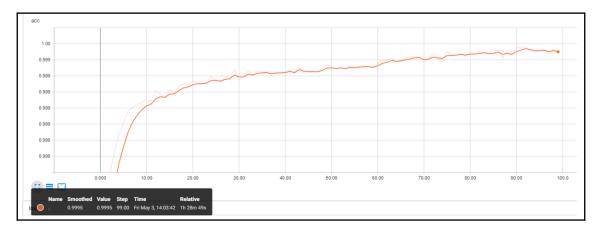


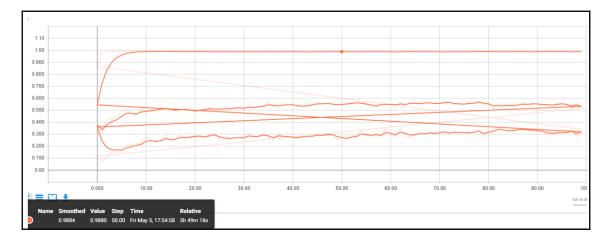


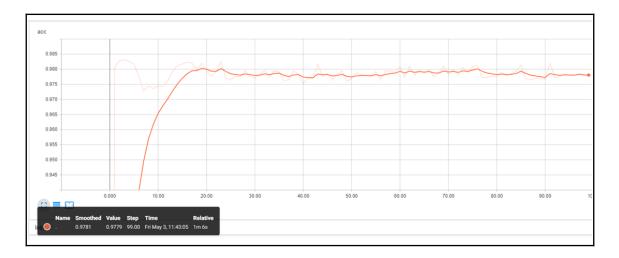


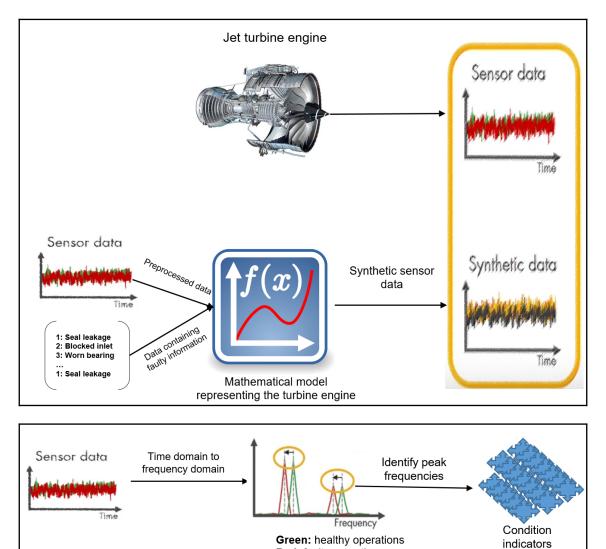
time	cpu utilisation (%)
05/04/2019 19:42	44.8
05/04/2019 19:43	44
05/04/2019 19:44	43.6
05/04/2019 19:45	43.2
05/04/2019 19:46	44
05/04/2019 19:47	43.2
05/04/2019 19:48	45.2
05/04/2019 19:49	44.8
05/04/2019 19:50	43.6
05/04/2019 19:51	42.4
05/04/2019 19:52	41.6
05/04/2019 19:53	41.2
05/04/2019 19:54	40.4
05/04/2019 19:55	40
05/04/2019 19:56	39.6
05/04/2019 19:57	39.2
05/04/2019 19:58	38.8
05/04/2019 19:59	38
05/04/2019 20:00	37.2
05/04/2019 20:01	36.8
05/04/2019 20:02	36
05/04/2019 20:03	35.2
05/04/2019 20:04	35.2
05/04/2019 20:05	34.8
05/04/2019 20:06	34
05/04/2019 20:07	35.6
05/04/2019 20:08	34.4

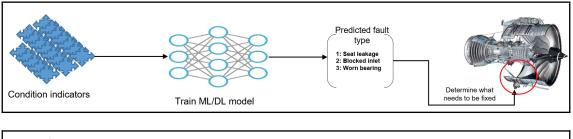


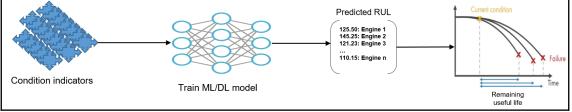


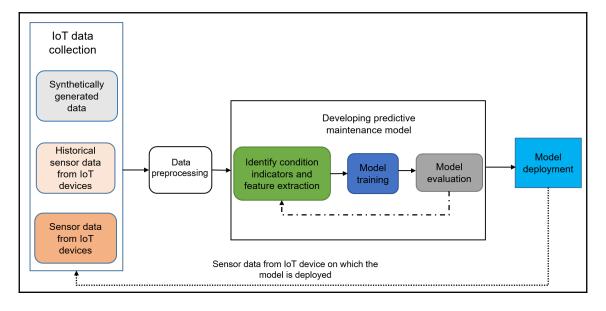

checkpoint-02.hdf5 1.5 MB	🔴 😑 📄 model.hdf5 Info	😑 😑 📄 dnn_model.hdf5 Info	
Modified: Today, 12:28 AM Add Tags	Modified: Today, 12:03 AM	5 dnn_model.hdf5 16.3 MB Modified: Thursday, 2 May 2019 at 7:52 PM	
▼ General:	Add Tags	Add Tags	
Kind: Document Size: 1,458,720 bytes (1.5 MB on disk) Where: Macintosh HD · Users • raz • anaconda3 • chapter7 • Anomaly-detection-cpu- utilisation-based • Istm-results Created: Sunday, 5 May 2019 at 12:28 AM Modified: Sunday, 5 May 2019 at 12:28 AM Stationery pad Locked	 ▼ General: Kind: Document Size: 84,640 bytes (86 KB on disk) Where: Macintosh HD - Users - raz - anaconda3 - chapter7 - IDS - IOT-IDS - IDS-App-layer-KKD Created: Monday, 6 May 2019 at 12:02 AM Modified: Monday, 6 May 2019 at 12:03 AM Stationery pad Locked 	 ♥ General: Kind: Document Size: 16,309,544 bytes (16.3 MB on disk) Where: Macintosh HD - Users - raz - anaconda3 - chapter7 - IDS - IOT-IDS - IDS - KDD- OverAll-DNN - dnn-kdd-results Created: Thursday, 2 May 2019 at 7:52 PM Modified: Thursday, 2 May 2019 at 7:52 PM Stationery pad 	
LSTM	AE	DNN	

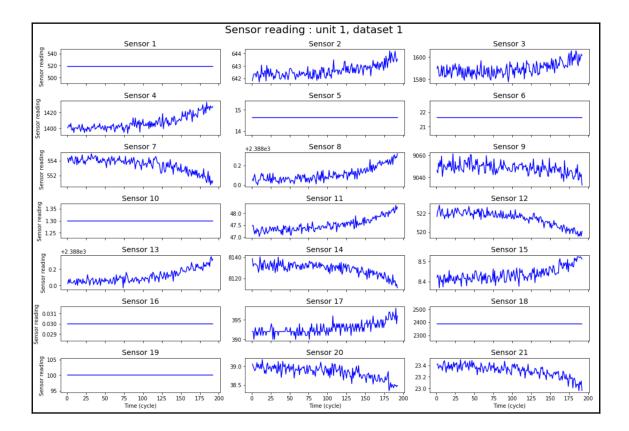

8000/8000 [=============================] - 1s 119us/step - loss: 6.1625e-04 - acc: 0.9849 - val_loss: 0.0043 - val_acc: 0.9910
Epoch 92/100
8000/8000 [==========================] - 1s 94us/step - loss: 6.0790e-04 - acc: 0.9863 - val_loss: 0.0043 - val_acc: 0.9925
Epoch 93/100
8000/8000 [==================================
Epoch 94/100
8000/8000 [==================================
Epoch 95/100
8000/8000 [==================================
Epoch 96/100
8000/8000 [========================] - 1s 121us/step - loss: 6.2155e-04 - acc: 0.9840 - val_loss: 0.0043 - val_acc: 0.9925
Epoch 97/100
8000/8000 [========================] - 1s 111us/step - loss: 5.7116e-04 - acc: 0.9848 - val_loss: 0.0036 - val_acc: 0.9900
Epoch 98/100
8000/8000 [==========================] - 1s 88us/step - loss: 5.2258e-04 - acc: 0.9830 - val_loss: 0.0038 - val_acc: 0.9920
Epoch 99/100
8000/8000 [==================================
Epoch 100/100
8000/8000 [=========================] - 1s 78us/step - loss: 5.0952e-04 - acc: 0.9850 - val_loss: 0.0033 - val_acc: 0.9920

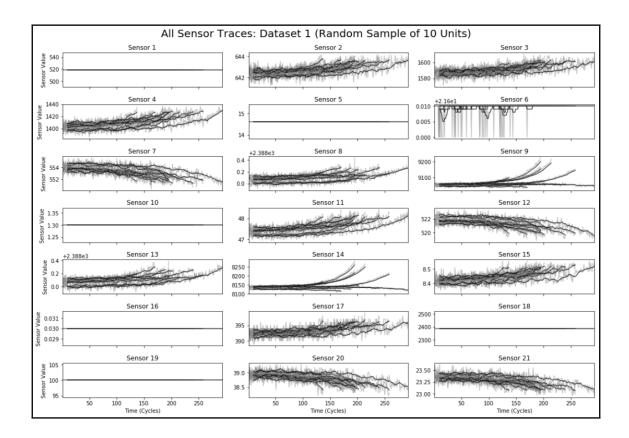

the second
Epoch 88/100
8000/8000 [
Epoch 89/100
8000/8000 [========================] - 1s 110us/step - loss: 2.0525e-04 - acc: 0.9881 - val_loss: 0.0059 - val_acc: 0.9070
Epoch 90/100
8000/8000 [
Epoch 91/100
8000/8000 [========================] - 1s 97us/step - loss: 1.9234e-04 - acc: 0.9901 - val_loss: 0.0059 - val_acc: 0.9070
Epoch 92/100
8000/8000 [==========================] - 1s 95us/step - loss: 1.7994e-04 - acc: 0.9918 - val_loss: 0.0054 - val_acc: 0.9210
Epoch 93/100
8000/8000 [========================] - 1s 109us/step - loss: 1.9276e-04 - acc: 0.9889 - val_loss: 0.0055 - val_acc: 0.9445
Epoch 94/100
8000/8000 [==================================
Epoch 95/100
8000/8000 [
Epoch 96/100
8000/8000 [==================================
Epoch 97/100
8000/8000 [
Epoch 98/100
8000/8000 [==================================
Epoch 99/100
8000/8000 [
Epoch 100/100
8000/8000 [==================================
(tf-gpu) C:\Anaconda3\Book-DL-IoT\chapter7\IoT-IDS\IDS-Network-layer-KDD>_

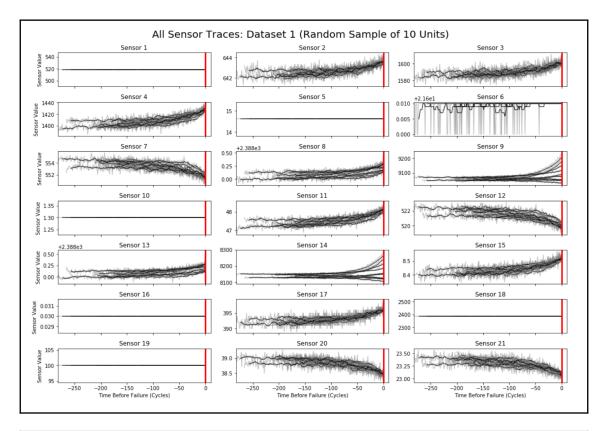

Epoch 00093: loss did not improve from 0.00189 Epoch 94/100 494021/494021 [========================] - 50s 101us/step - loss: 0.0022 - acc: 0.9995 Epoch 00094: loss did not improve from 0.00189 Epoch 95/100 494021/494021 [==========================] - 53s 108us/step - loss: 0.0025 - acc: 0.9995 Epoch 00095: loss did not improve from 0.00189 Epoch 96/100 . 940021/494021 [=========================] - 51s 104us/step - loss: 0.0022 - acc: 0.9995 Epoch 00096: loss did not improve from 0.00189 Epoch 97/100 494021/494021 [=========================] - 55s 111us/step - loss: 0.0022 - acc: 0.9995 Epoch 00097: loss did not improve from 0.00189 Epoch 98/100 . 494021/494021 [===================================] - 50s 101us/step - loss: 0.0023 - acc: 0.9995 Epoch 00098: loss did not improve from 0.00189 Epoch 99/100 494021/494021 [========================] - 52s 104us/step - loss: 0.0023 - acc: 0.9995 Epoch 00099: loss did not improve from 0.00189 Epoch 100/100 . 494021/494021 [==================================] - 51s 103us/step - loss: 0.0028 - acc: 0.9995 Epoch 00100: loss did not improve from 0.00189 (tf-gpu) C:\Anaconda3\Book-DL-IoT\chapter7\IoT-IDS\IDS-KDD-OverAll-DNN>

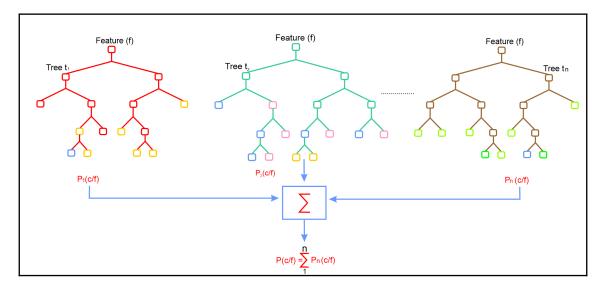


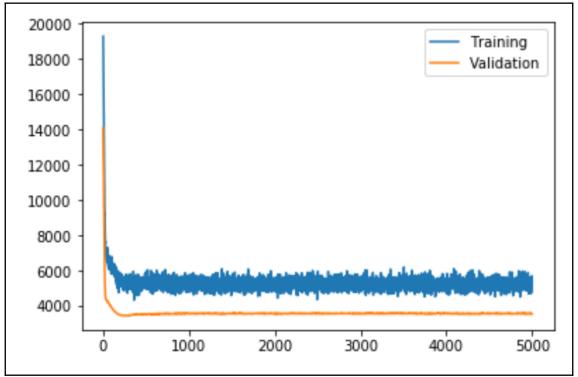

Chapter 8: Predictive Maintenance for IoT

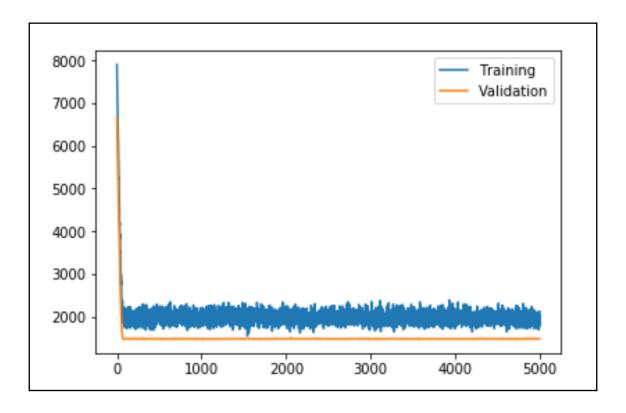



Red: faulty operations

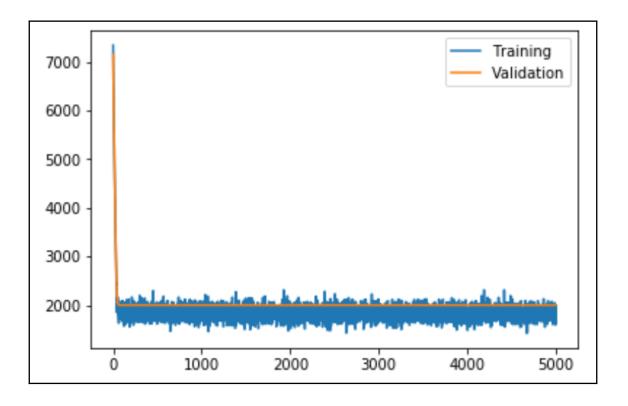


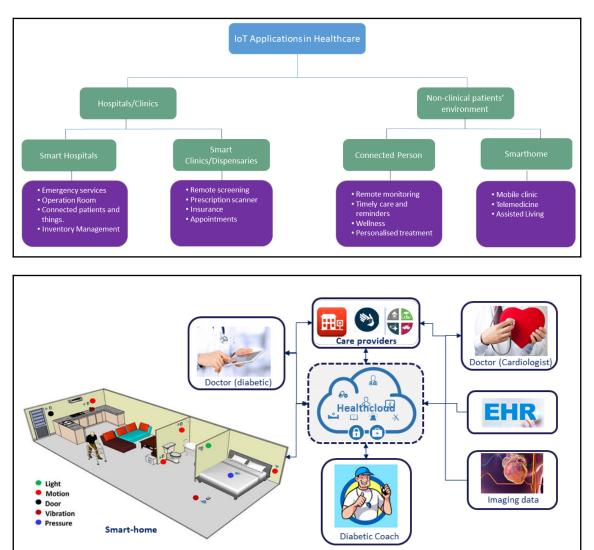


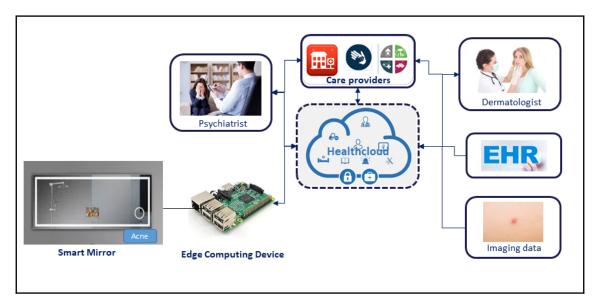


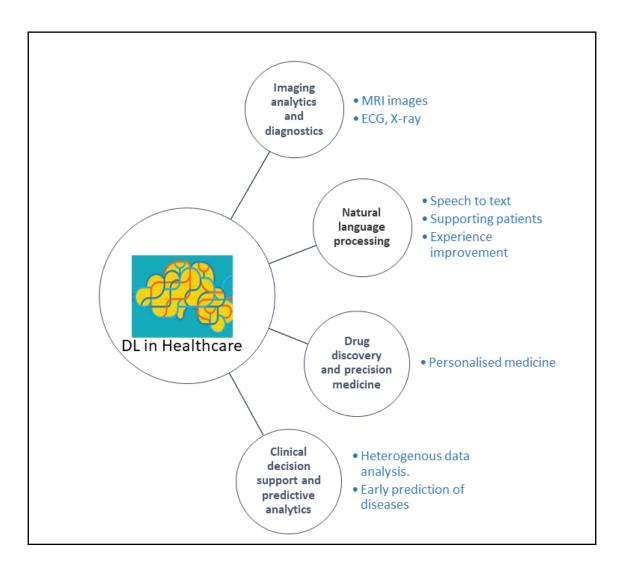

	First s	ensor observati	ion				Last sensor o		
\leq	7							Engi	ne failure 📈
	<			Ob	served engine life			RUI	L>
	0	20	40	60	80	100	120	140	160
					Time (cycles)				

	engine_no	cutoff_time	RUL
index			
1	1	2000-01-01 12:00:00	119
2	2	2000-01-03 00:10:00	189
3	3	2000-01-05 09:50:00	22
4	4	2000-01-06 06:00:00	90
5	5	2000-01-07 02:30:00	236

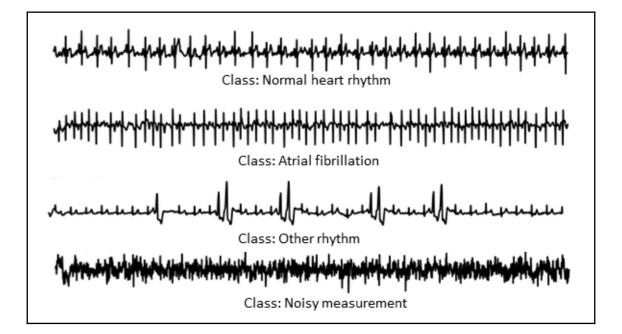


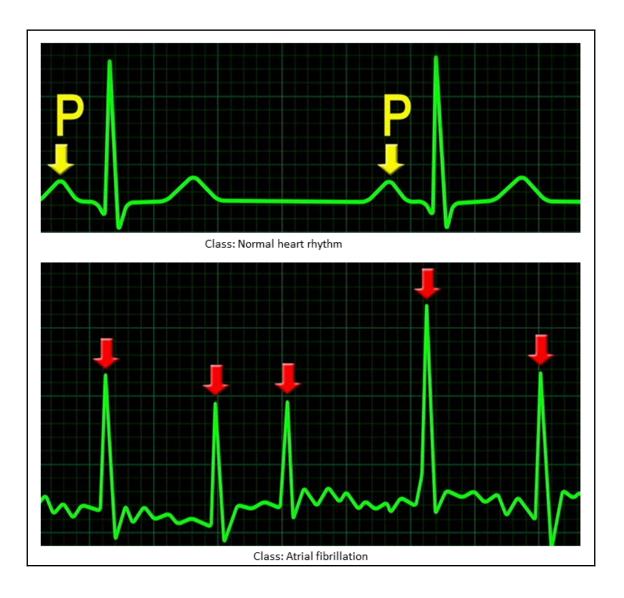


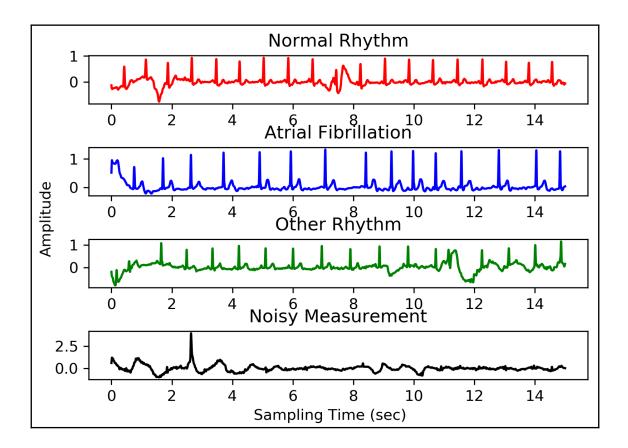

	engine_no	cutoff_time	RUL
index			
1	1	2000-01-03 00:20:00	30
2	2	2000-01-04 07:20:00	143
3	3	2000-01-06 14:30:00	119
4	4	2000-01-07 15:30:00	243
5	5	2000-01-09 15:50:00	146

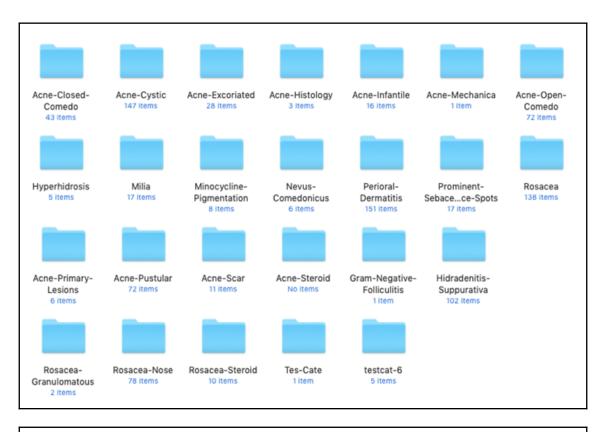


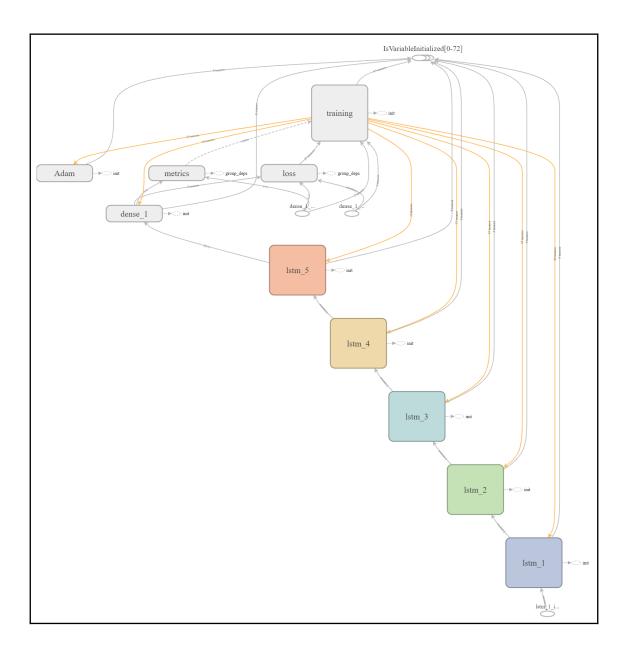
Chapter 9: Deep Learning in Healthcare IoT

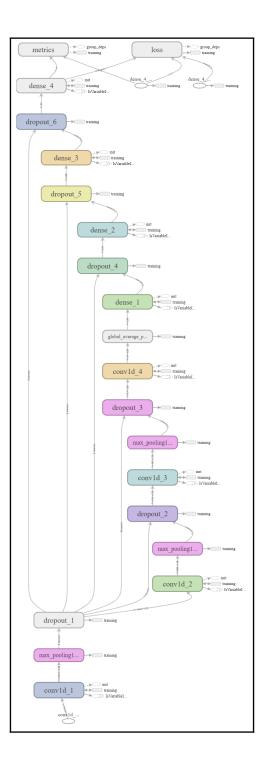


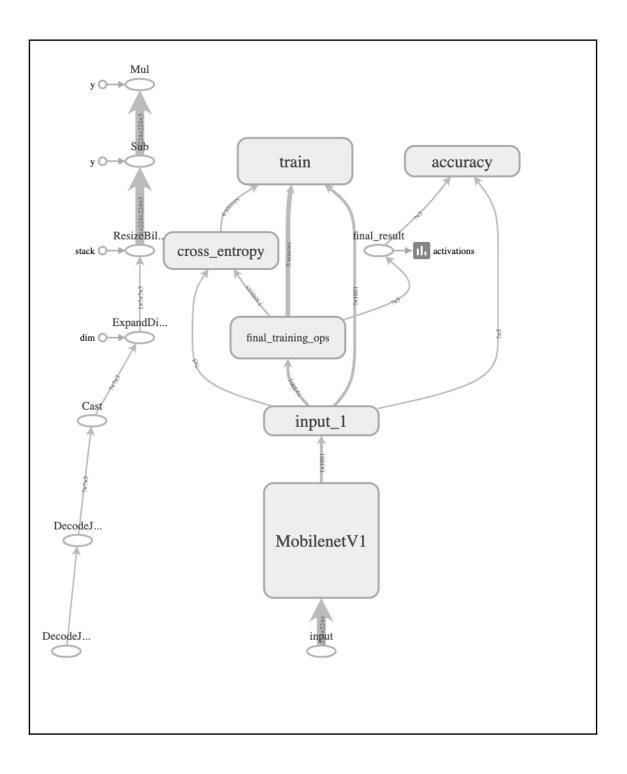




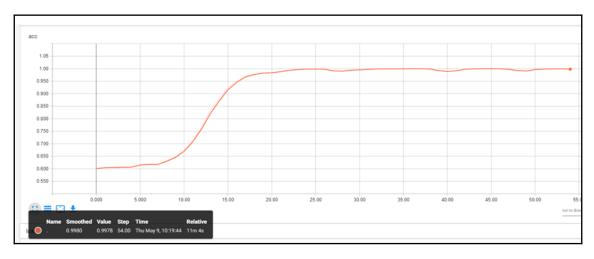


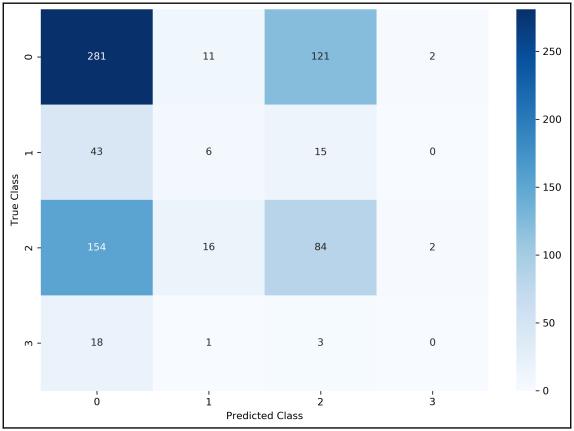


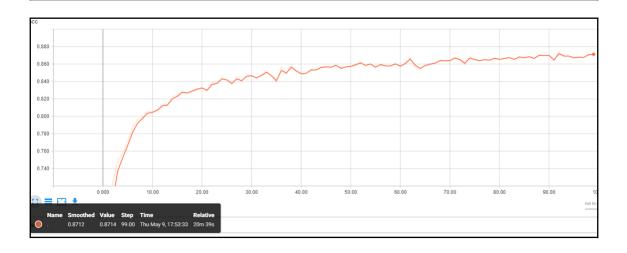

		_
Name	Date modified	Туре
Acne-Closed-Comedo	08/05/2019 13:58	File folder
Acne-Cystic	08/05/2019 14:00	File folder
Acne-Excoriated	08/05/2019 14:00	File folder
Acne-Histology	08/05/2019 14:00	File folder
Acne-Infantile	08/05/2019 14:01	File folder
Acne-Mechanica	08/05/2019 14:01	File folder
Acne-Open-Comedo	08/05/2019 14:02	File folder
Acne-Primary-Lesions	08/05/2019 14:02	File folder
Acne-Pustular	08/05/2019 14:03	File folder
Acne-Scar	08/05/2019 14:03	File folder
Acne-Steroid	08/05/2019 14:03	File folder
Gram-Negative-Folliculitis	08/05/2019 14:03	File folder
Hidradenitis-Suppurativa	08/05/2019 14:05	File folder
Hyperhidrosis	08/05/2019 14:05	File folder
Milia	08/05/2019 14:05	File folder
Minocycline-Pigmentation	08/05/2019 14:05	File folder
Nevus-Comedonicus	08/05/2019 14:05	File folder
Perioral-Dermatitis	08/05/2019 14:07	File folder
Prominent-Sebaceous-Glands-and-Fo	08/05/2019 14:08	File folder
Rosacea	08/05/2019 14:10	File folder
Rosacea-Granulomatous	08/05/2019 14:10	File folder
Rosacea-Nose	08/05/2019 14:11	File folder
Rosacea-Steroid	08/05/2019 14:11	File folder
Tes-Cate	08/05/2019 14:11	File folder
testcat-6	08/05/2019 14:11	File folder

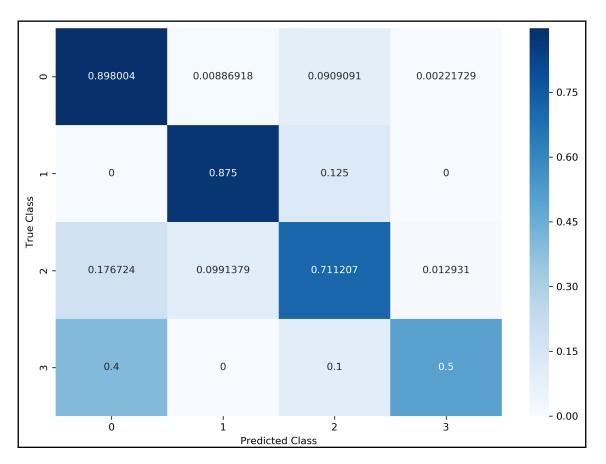


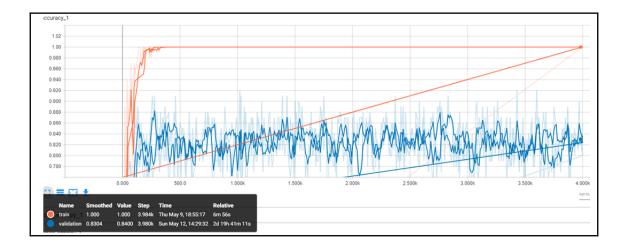
> OSDisk (C:) > Anaconda3 > Bo	ok-be-lot / chapters-healt	incare / use-case	e-2 / DE-TOT-SKIN	Disease > dataset-Acne-reduce
Name	Date modified	Туре	Size	
Acne-Cystic	09/05/2019 18:47	File folder		
📙 Hidradenitis-Suppurativa	12/05/2019 16:31	File folder		
Perioral-Dermatitis	09/05/2019 18:47	File folder		
Rosacea	09/05/2019 18:47	File folder		



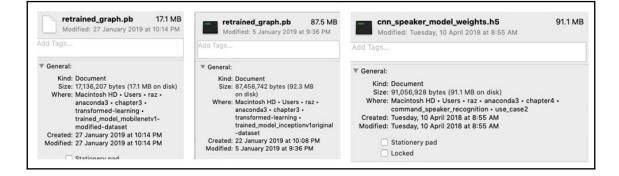



Best_model.h5 Properties	Best_model.h5 Properties	trained_mobilenet.pb Properties
General Security Details Previous Versions	General Security Details Previous Versions	General Security Details Previous Versions
Best_model.h5	Best_model.h5	trained_mobilenet.pb
Type of file: H5 File (h5)	Type of file: H5 File (h5)	Type of file: PB File (,pb)
Opens with:	Opens with: Pick an application Change	Opens with: Pick an application Change
Location: C:\Anaconda3\Book-DL-IoT\chapter9-healthcare\u	Location: C:\Anaconda3\Book-DL-loT\chapter9+healthcare\u	Location: C:\Anaconda3\Book-DL-loT\chapter9-healthcare\u
Size: 234 MB (246,405,208 bytes)	Size: 8.50 MB (8,915,936 bytes)	Size: 16.3 MB (17,128,186 bytes)
Size on disk: 234 MB (246,407,168 bytes)	Size on disk: 8.50 MB (8,916,992 bytes)	Size on disk: 16.3 MB (17,129,472 bytes)
Created: 14 May 2019, 12:23:41	Created: 08 May 2019, 13:12:10	Created: 09 May 2019, 18:58:21
LSTM	CNN1D	Mobilenet V1


Epoch 42/100				_		_	
- 12s - loss:	0.0260	acc:	0.9919	val_loss:	3.2725	val_acc:	0.4954
Epoch 43/100							
- 13s - loss:	0.0083	acc:	0.9984	val_loss:	3.5102	val_acc:	0.5073
Epoch 44/100							
- 13s - loss:	0.0022	acc:	0.9997	val_loss:	3.6529	val_acc:	0.5033
Epoch 45/100							
- 13s - loss:	0.0020	acc:	0.9999	val_loss:	3.7180	val_acc:	0.4980
Epoch 46/100							
- 13s - loss:	0.0017	acc:	0.9999	val_loss:	3.7393	val_acc:	0.4993
Epoch 47/100							
- 13s - loss:	0.0021	acc:	0.9997	val_loss:	3.7430	val_acc:	0.4941
Epoch 48/100							
- 13s - loss:	0.0092	acc:	0.9969	val_loss:	3.6456	val_acc:	0.4729
Epoch 49/100							
- 125 - loss:	0.0217	acc:	0.9922	val_loss:	3.3237	val_acc:	0.4690
Epoch 50/100	0.0306						0.4650
- 12s - loss:	0.0300	acc:	0.9904	val_loss:	3.3988	val_acc:	0.4650
Epoch 51/100	0.0004		0.0075		2 4604		0 4007
- 13s - loss: Epoch 52/100	0.0094	acc:	0.9975	val_toss:	3.4094	var_acc:	0.4927
- 12s - loss:	0 0076	200	0 0097	wal loss:	3 6357	wal acci	0 5033
Epoch 53/100	0.0050	acc.	0.990/	val_ioss.	5.0257	var_acc.	0.5055
- 13s - loss:	0 0037	2001	A 0003	val loss:	3 6225	val acc:	0 4742
Epoch 54/100	0.0037	acc.	0.9995	Var_1055.	5.0225	var_acc.	0.4/42
- 13s - loss:	0 0022	acc	A 0003	val loss.	3 6380	val acc:	0 4901
- 155 - 1055.	010022	acc.	019993	var_1055.	310300	Agt_gcc.	0.4901



- 10s - loss: 0.1073 - acc: 0.9634 - val_loss: 0.8192 - val_acc: 0.8394 Epoch 00495: val acc did not improve from 0.85815 Epoch 496/500 - 10s - loss: 0.1155 - acc: 0.9623 - val_loss: 0.7955 - val_acc: 0.8406 Epoch 00496: val_acc did not improve from 0.85815 Epoch 497/500 - 10s - loss: 0.1181 - acc: 0.9618 - val loss: 0.8229 - val acc: 0.8488 Epoch 00497: val_acc did not improve from 0.85815 Epoch 498/500 - 10s - loss: 0.1081 - acc: 0.9634 - val_loss: 0.9242 - val_acc: 0.8406 Epoch 00498: val acc did not improve from 0.85815 Epoch 499/500 - 10s - loss: 0.1013 - acc: 0.9643 - val_loss: 0.8431 - val_acc: 0.8394 Epoch 00499: val_acc did not improve from 0.85815 Epoch 500/500 - 10s - loss: 0.1054 - acc: 0.9642 - val loss: 0.8921 - val acc: 0.8288 Epoch 00500: val acc did not improve from 0.85815 Last epoch's validation score is 0.8288393903868698 (tf-gpu) C:\Anaconda3\Book-DL-IoT\chapter9-healthcare\use-case-1\DeepECG


				··· ··· ·
INFO:tensorflow:2019-05-12	14:29:29.897619:	Step 3960:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-12	14:29:29.897619:	Step 3960:	Cross entropy = 0.002337	
INFO:tensorflow:2019-05-12	14:29:29.999564:	Step 3960:	Validation accuracy = 81.0%	(N=100)
INFO:tensorflow:2019-05-12	14:29:30.962488:	Step 3970:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-12	14:29:30.962488:	Step 3970:	Cross entropy = 0.002503	
INFO:tensorflow:2019-05-12	14:29:31.069451:	Step 3970:	Validation accuracy = 83.0%	(N=100)
INFO:tensorflow:2019-05-12	14:29:32.018879:	Step 3980:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-12	14:29:32.018879:	Step 3980:	Cross entropy = 0.002206	
INFO:tensorflow:2019-05-12	14:29:32.098854:	Step 3980:	Validation accuracy = 84.0%	(N=100)
INFO:tensorflow:2019-05-12	14:29:33.001305:	Step 3990:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-12	14:29:33.001305:	Step 3990:	Cross entropy = 0.001930	
INFO:tensorflow:2019-05-12	14:29:33.089275:	Step 3990:	Validation accuracy = 81.0%	(N=100)
INFO:tensorflow:2019-05-12	14:29:33.907782:	Step 3999:	Train accuracy = 100.0%	
INFO:tensorflow:2019-05-12	14:29:33.908782:	Step 3999:	Cross entropy = 0.001757	
INFO:tensorflow:2019-05-12	14:29:33.992750:	Step 3999:	Validation accuracy = 86.0%	(N=100)
INFO:tensorflow:Final test	accuracy = 89.5%	(N=76)		

Chapter 10: What's Next - Wrapping Up and Future Directions

Chapter Name	loT Use Cases	DL Models Used	Model Performance	
Image Recognition in IoT	 Image-based road's fault detection Image-based smart solid waste separation 	Two implementations of CNN: • Incentive V3 • Mobilenet V1	 Storage requirement suitable for transfer learning. Training and validation accuracies for both use cases are above 90%. 	
Audio/Speech/Voice Recognition in IoT	 Voice controlled smart light Voice-controlled home access 	Three implementations of CNN: Incentive V3, Mobilenet V1, and CIFAR-10 CNN with SVM	 Storage requirement suitable for transfer learning. Training and validation accuracies for use case 1 are around 75% and are around 90% for use case 2. 	
Indoor localization in IoT	Indoor localization with WiFi fingerprinting	Autoencoder	 Storage requirement suitable for transfer learning. Validation accuracy around 90% . 	
Physiological and Psychological State Detection in IoT	 Remote progress monitoring of physiotherapy Smart Class Room 	LSTM and two implementations of CNN: • Simple CNN • Mobilenet V1	 Storage requirement suitable for transfer learning. Training and validation accuracies for use case 1 are above 90% and around 70% for use case 2. 	
Security in IoT	 Intelligent Host Intrusion Detection in IoT Intelligent Network Intrusion Detection in IoT 	LSTM, DNN, and Autoencoder	 Storage requirement suitable for transfer learning. Training and validation accuracies for both use cases are above 90%. 	
Predictive Maintenance for IoT	Predictive maintenance for aircraft gas turbine engine.	LSTM	 Storage requirement suitable for transfer learning. Was able to successfully predict maintenance with acceptable mean error rate. 	
Deep learning in Healthcare IoT	Remote Chronic Disease Management IoT for Acne Detection and Care	LSTM, CNN1D, and Mobilenet V1	 Storage requirement of CNNs are suitable for transfer learning, but LSTM struggles. Validation accuracies for LSTM in use case is around 50%, CNN1D is around 85%. Accuracies for Mobilenet V1 in use case two are around 90%. 	

Lack of large dataset	 Limited no. of real-life IoT datasets. Dataset size may not be big enough to avoid overfitting. May not be accessible for free use.
Preprocessing	Device heterogeneity andData format heterogeneity make preprocessing challenging.
Security & privacy preserving DL models	 DL models need to preserve IoT security & privacy as per application's need. Security of the DL model's functionality & QoS.
Big Data Issues	 Volume: time & structure complexity, noisy & unlabeled data. Variety: heterogenous formats & conflicting sources. Velocity: streaming data need real-time processing. Veracity: lack of authenticity of data/source could make DL useless.
DL Models Limitations	 False confidence of deep learning model. Lack of regression capability within DL model based solutions.

Resource-constrained IoT Devices	 Limited battery, processing and memory capacity. Model learning infeasible in most devices. Inferencing using pre-trained models is infeasible in some cases.
Edge/Fog Computing Challenges	 New discovery protocol needed. In distributed learning, model execution and task splitting is an issue. Dynamicity of mobile edge devices.
Cloud Computing Challenges	 Response time and legal/policy. Security & privacy of user data in the cloud (processing and storage).