
Moving Java EE.next
to the Cloud

Ralph Ellison said, "When I discover who I am, I'll be free".

The expert group of Java EE 7 originally proposed the platform version to aim for
standardization of cloud - computing platforms known as Platform-as-a-Service
(PaaS). From January 2010 to July 2012, the expert group ran with this initial idea,
until they realized that Java EE 7 priorities and project aims were misaligned and
that the enterprise Java cloud - computing market place was premature; it was too
early to standardize The Cloud and fortunately for Java EE 7 they withdrew the
notion at the very last moment.

The current digital scope of the Java cloud providers is in a state of flux and in
principle moving Java EE to the cloud is a good investment for the enterprise Java
platform. The question is how to specify the Java inside a cloud environment so that
it is fair, competitive, and sustainable to all participants. This chapter lays the ground
work for the tough, challenging, engaging technical projects that are surely going to
come further down the line.

Moving Java EE.next to the Cloud

[534]

Ever maturing Java
Java itself is divided into three editions, originally by Sun Microsystems: the
Standard Edition (SE), the mobile edition (ME), and the subject matter of this
book, the enterprise edition (EE). Furthermore, Java is growing into other devices,
desktops, and form factors.

In 2013, if you have solid, respectable, and current enterprise Java skills, you are well
placed in the software industry. The following shows exactly that:

Our journey so far
Let us consider our journey from the past to the present. We ought to understand
why we have cloud-computing now. In terms of enterprise computing, there have
been four epochs in the digital age.

During the 1960s enterprise computing was achieved by running programs on
mainframe and mini computers and was certainly achieved by time-sharing. The
expensive resources in this epoch were processing speed, amount of memory, and
disk space. The invention of multi-tasking marks the first step of virtualization.

Online Chapter

[535]

At the beginning of the 1970s, Xerox Palo Alto Research Centre (PARC) institution
was established. This famous Californian institution invented Windows, Icons,
Mouse, and Pointer. PARC would be the inspiration for the desktop user interface in
Windows, Mac OS X, and Linux operating systems. In 1969, AT & T Bell developed
UNIX, one of the first multi-tasking operating systems.

The second epoch began sometime in the late 1980s with the idea of client/server
computing. The industry pushed for workload to be distributed across computers.
Business functions were executed on a client, which requested a service, a unit of
work to be completed on a server. Client/server computing relied on the existence
of a network in order to spread the architecture of a distributed application.

The 1990s saw the birth of the World Wide Web, the exponential growth of
the Internet, and the wider adoption of client/server computing. Client-server
computing grew popular. It eventually caused businesses to re-evaluate the logic
of executing code using time-sharing on large mainframes and mini-computers. The
increasing demand for client-server was symptomatic for spread of commoditization.

The third epoch, from late 1995 to 2005, saw the growth and appeal of grid
computing. There were several attempts to provide a utility computing platform;
Sun Microsystems is notable for providing grid computing as a pay-as-you-go
for amount of CPU/hour. Unfortunately, history has shown that the business model
was wrong.

Commodity hardware had been connected together in very large clusters of servers
in order to solve big-compute problems. The effort of the grid was restricted to
scientists, government researchers, military research, and projects where high
performance computing was required. However, during this epoch of utility
computing, which for the very first time saw complex Internet applications accessing
and invoking services running on a grid and utility computing environment.
Well-known examples of these achievements were Google Mail, Yahoo Mail, and
Microsoft Hot-mail, the earliest forms of Software-as-a-Service (SaaS) for free.

Moving Java EE.next to the Cloud

[536]

The fourth epoch, since 2005, is properly marked for the term cloud computing.
Amazon released the Amazon Web Service (AWS) to the public. The release of
Amazon Elastic Computing Cloud (EC2) grew rapidly in popularity as developers,
service providers, and entire businesses started to build their business model around
the technological shift known as The Cloud.

Cloud computing attempts and delivers to business the prospect of high-availability,
utility computing, and scalable resources across geographic time zones with
sustainability and economy.

Too early to standardize
This book was written in the 2012 to 2013 time frame and we witnessed constant
acceleration of changes in the state-of-the-art in cloud computing providers and
solutions. Business demands from the customers and the further boarding of
emerging nations onto the Internet as we progress through the decade means that
there is a demand for server-side computing infrastructure. In order to handle
this demand, businesses are looking at the cloud. Why has there been this sudden
demand around 2010 and afterwards? Part of the reason is the movement of the
consumers from using desktop and laptop PCs to mobile devices and smartphones.

Online Chapter

[537]

Post-PC phase
In 2010 by Mary Meeker, a venture capitalist and former Wall Street securities analyst,
successfully predicted that the global number of smartphones and tablets would
surpass the production of desktop and notebook PCs in 2012. In fact, there were
51 million units of tablet computers shipped globally in Q4 of 2012; that just about
exceeded the notebooks and far supplanted the 37.5 million desktop PCs that were
shipped.

The aggressive momentum in mobile computing is the main driver behind the
economic surge in scalable computing on demand, though admittedly cloud
computing was in existence since mid-2005 and serving users on desktops and
laptops. Nevertheless global mobile traffic is expected to surge higher for the rest of
the decade. Mobile computing is setting the profit margins and revenue indicators.

In February 2013, Google released a brand of wearable computer with a head mounted
display called Glass. The next demand on cloud computing could possibly be to
provide services readily and accessibly to people who wear mobile computers. Only
time will tell and only when we can all look back in five, or maybe ten years, can we
completely judge the present and what the future might shape up to be. For now, we
ought to get a good handle on this thing that everyone is calling The Cloud.

The Cloud
The phrase Cloud Computing is the hottest buzzword in computing in the beginning
of the twenty first century. Why do people call it the cloud? It probably has to do
with drawing that system architects used to communicate how their requirements
affected the balance of forces. The drawing of a squiggly cloud on a whiteboard is
synonymous with some sort of abstract networking and remote communications
between at least two distributed systems.

These are the fundamental elements of cloud computing:

•	 Pooled Computing Resources into generic clusters that consumers can
subscribe to

•	 Virtualization of operating systems, sometimes several, onto shared
commodity machines that consumers can control in order to reduce cost of
ownership

•	 Elastic Scalability of resources and virtualization in order to scale up
(and scale down) against demand

Moving Java EE.next to the Cloud

[538]

•	 Automation, the ability to create new instances with operating systems and
virtual machines, and remove existing ones as the client or business requires

•	 Pay-As-You-Go business model that permits billing to be charged for only
the services that the subscriber uses.

The following diagram illustrates the Russian doll encapsulation of the various
anything-as-a-service. The lowest level is IaaS and the highest level is SaaS.

XaaS, where X stands for one of Infrastructure, Platform, Software, and Framework.
The data centers are ideally distributed in wide geographic area. If you want to
get closer to the so-called "metal", pick IaaS. If you are only interested in buying
software, then choose Saabs, and if on the other hand you want to develop your
managed applications then choose PaaS.

Online Chapter

[539]

Infrastructure as a service
The lowest level of a cloud service is quaintly known as Infrastructure as a Service
(IaaS). It is the most basic level of service for a cloud platform, other than providing
hardware as a service. IaaS, then, is an environment for building native applications.
Amazon Elastic Compute Cloud (EC2) is a good example of IaaS.

As the computer industry moved from centralized servers to distributive
architectures, we have seen the move into virtualization. IaaS vendors offer
virtualization of operating systems that are tailor made to run on specific commodity
hardware. A customer can subscribe to IaaS and install their own specific operating
system image or more often than not, the IaaS providers will have default images,
which they have already tested with their cloud environment.

Infrastructure as a service has the following attractive advantages:

•	 Lower cost of ownership
•	 On demand allocation of virtual machines to cope with peak time and

foreseen operational challenges
•	 The ability to provision custom operating system images that the subscriber

has put together
•	 The transfer of the professional infrastructure support to a vendor who

has the expertise to maintain the environment and therefore reduce the
operational cost of the customer's own business overheads

•	 Ability to experiment with new operating systems and other development
environments with reduced cost of buying into the technology wholesale and
up front

The low cost of entry into a service-oriented architecture has high appeal to business
entrepreneurs. So it is not surprising that those startups have taken a keen interest
in services such as Amazon Cloud Foundation, Microsoft Azure, and other such
examples of IaaS providers. There are disadvantages to the IaaS and some of these are:

•	 It is the subscriber's responsibility to manage both the infrastructure and the
distributed cloud application

•	 Subscribers need, therefore, to have necessary up front expertise in the
operating system, virtualization, memory, and performance utilization

•	 Subscribers are responsible for managing their own CPU and bandwidth

IaaS is the low-level cloud computing and Java only fits in here with the provision of
Java Virtual Machines.

Moving Java EE.next to the Cloud

[540]

Platform as a service
Platform as a Service (PaaS) is the model of the cloud provisioning that is one level
above the infrastructure as a service. Instead of just providing a virtual operating
system, there is an entire application service interface available to developers,
designers, and architects. PaaS, then, is an environment for building a managed
application that executes only inside a runtime container. An excellent commercial
example of Platform as a Service would be Google App Engine.

The advantages of Platform as a Service are:

•	 Increased level of abstraction above that of Infrastructure as a Service.
•	 Business subscribers can develop applications often more quickly and deploy

such application with less knowledge of virtualization practices.
•	 PaaS often delivers ready-made computing resources by default. Services

can include persistant storage, memory cache, load-balancing, federated
servers, system monitoring, logging services, point-of-control operations, and
security options.

•	 There are often a great number of people on the recruitment market
who have the skills required to be application developers rather than
infrastructure operations support.

The PaaS solution provides resources such as persistent data storage, web services,
message queues, distributed applications as part of an overall service level
agreement. The platform provider is ultimately responsible for CPU and bandwidth
whereas the subscriber is charged on demand for the resources that are used subject
to a contractual agreement.

Disadvantages of PaaS are:

•	 Locked into the platform, especially if it heavily leverages proprietary
interfaces

•	 Less flexibility to perform fine tuning of the managed platform
•	 Subscribers can only develop applications in the supported programming

languages in the PaaS solution
•	 Security of the PaaS may not be appropriate enough for data privacy and

banking transactions

Although Platform as a Service is easier to get into, the application architect must
think carefully about portability, security, and performance.

Online Chapter

[541]

One plausible reason why PaaS may not be appropriate could be a situation where
the business foresees that it will need direct control of CPU resources and bandwidth
in order to provide performance tuning down to the hardware level. A solution such
as a Google App Engine may not be appropriate for such a compute intensive and/
or highly available application, therefore the client may consider an IaaS instead.

Cloud architecture and PaaS
PaaS solutions work well in scalability and high availability for
particular types of technical requirement. As an application architect,
it is your responsibility to consider the workloads and demands of
your application—your PaaS cloud provider will not do this for you.
Different vendors offer incompatible PaaS level of service and of course
there is the permanent engineering idiom to contend with trade-off—the
ability to configure and control versus the ease of use.
If your application has particular obligations on special configuration
of Java Virtual Machines or certain types of memory requirement, then
PaaS could be too generic for your needs. This reasoning also applies to
cache mapping scenarios and input-output metrics.

Enterprise Java certainly fits the PaaS concept and in fact several vendors already
offer these types of solutions for Java EE 7 before any standardization by the JCP.

Software as a Service
Software as a Service (SaaS) is one level above PaaS, where the service is a
software "on demand" solution. In other words, the final working software is the
only deliverable product in this case, in comparison to PaaS. Usually the SaaS
application solves a specific business need, which may be horizontally aligned
across the industries. SaaS, then, is managed and packaged software applications.
Examples of SaaS solutions are systems designed to provide Customer Relationship
Management (CRM), Enterprise Integration Platforms (EIP), or Human Resource
Management System (HRMS). The industry often positions an example of a SaaS
solution as being
www.saleforce.com.

What is the difference between a typical application service and a cloud platform
SaaS solution? The SaaS solutions share the common theme of a XaaS: the software is
delivered as a part of distributed dynamically scalable cloud platform. The software
is wholly provisioned by the cloud vendor and the subscriber does not load or install
the application on their systems. The business model is an on demand, Pay As You
Go (PAYG) and subscription based license model. The customer only buys the access
to the software and the provisioning that it requires for the SaaS solution.

Moving Java EE.next to the Cloud

[542]

SaaS solutions are level above the PaaS because they are generally about a fully
completed application running in the cloud. There may be a form of customization
allowed in order to, for example, personalize a particular SaaS application to the
branding of the business.

A SaaS vendor may offer a Framework as a Service (FaaS) as part of the overall
solution, which permits customer developers to further configure the SaaS
application to their needs. The overall FaaS is much smaller in scope, more
restrictive. and less generic than a PaaS. In other words, business subscribers
are not usually able to build their own SaaS application from a FaaS.

FaaS, then, is an environment for building a module for another sort of
cloud application, usually Enterprise Resource Planning (ERP) in the business
technology sector.

The advantages of SaaS solutions are:

•	 It is a direct solution for businesses, if and only if the SaaS solution meets
their goals, solves a particular business process solution, saves money,
increases profit, improves productivity, and so on. The business may find
that SaaS offers a so-called one-stop shop solution.

•	 The scaling of SaaS solutions is on demand. It can be grown or reduced, as
and when the business subscriber requires it to be so.

•	 There is a usually very minimal up front software developer cost that may
mean absolutely zero cost to the business. The subscriber just pays for
computing resources, pushes any change-request, feature enhancements over
to the SaaS provider and they deal with it.

•	 The operational thought after purchase of a SaaS solution can be treated
afterwards as simply business-as-usual.

•	 The SaaS provider might also offer a Framework-as-a-Service (FaaS) available
to the business subscriber to extend and/or brand their view of the product.
Such FaaS function can be a personalization kit. It could also be a plug-in
architecture.

•	 SaaS solutions often exude the ability to share and collaborate on
information, sometimes in real system. Multiple members of staff, employees,
contractors, and managers can work together in a group. Often this type of
SaaS solution may offer a work flow feature as part of the product.

•	 Upgrades and bug fixes of the SaaS solution are the responsibility of the
provider rather than being part of the subscriber's hassle budget.

Online Chapter

[543]

The disadvantages of SaaS solutions are:

•	 Business subscriber is locked into the vendor that provides the SaaS, which
is really saying nothing more than current business-as-usual practices. If
a business buys a commercial product there are usually more than two
proprietary features.

•	 There is a considerable lack of extensibility in SaaS solution. The business
does not own the source code; it cannot further develop the solution and
release new changes. The loss of ultimate configuration in a SaaS solution
could be an issue if the business suddenly faced urgent change.

•	 The business has less control over the quality of their data. Stakeholders
must think harder about how to provide evidence and audit information for
regulatory compliance. They must also decide on a clear strategy on data
security and privacy of customer data and how the external cloud systems
integrate with in-house ones.

At the time of writing, a viable Java SaaS application could be built from the PaaS
vendor stack, albeit with the risks of the vendor-lock and proprietary APIs. In other
words, this is a business risk.

The following diagram illustrates the basic client-server architecture of Java
enterprise applications today:

Moving Java EE.next to the Cloud

[544]

This is the way that architects have built Java EE applications, with multiple types
of clients invoking endpoints on a cluster of application servers, each running on a
separate JVM.

Data-as-a-Service (DaaS) is a new cloud term on the block, which is closely
associated with SaaS though it is a popular notion to understand that relational
databases do scale as well as infrastructure, platform, and software. There is,
however, considerable movement with some innovations into scaling databases
by partitioning database tables, adding hardware CPU optimization for global
transactions, and very high speed networking between servers using proprietary
technologies, such as Infinispan, in order to replicate data across nodes. Data can
only be supplied on demand through Service-Oriented Architecture (SOA). There is
an increasing demand for data that is pre-processed in order to clean it from artifacts
and allow it to be sold to businesses whenever they need it. Data on demand is about
fast agility, lower affordability, and high quality.

Multi-tenancy
In order to achieve some of the cost efficiency of deployment, XaaS typically utilizes
the principle of multi-tenant Architecture in a cloud computing environment.

The history of multi-tenancy is not new at all. In fact, the very first data centers with
mainframe exhibit this form of computing access through time-sharing. Business in
the 1960 achieved economies of scale by charging for access to machine. It took the
form of renting computer time. A multi-tenant was given a special ID to log on and
the user (the entity customer identifier) was charged for their mainframe access.

Multi-tenancy changed in the 1990's when Application Service Providers (ASP)
hosted business applications on behalf of their customers. Large scale applications,
then, were often spread across separate machines and shared access to several
customers. These distributed applications, often clustered, load-balanced, and
federated servers, were the forerunners of today's cloud applications.

In cloud computing, the concept of multi-tenancy permits a provider to segment and
isolate individual groups and users. A multi-tenancy application, then, is a single
of the application, which runs on a server and serves multiple client organizations
(tenants) simultaneously. Multi-tenancy is a key driver of cost reduction. By allowing
simultaneous access, physical hardware, memory, and storage costs are reduced,
because these resources are shared.

The key provisos in multi-tenant applications are that each tenant must be isolated
from interference from other tenants. Each tenant must have security in memory and
storage. There should be no corruption of each other's data through unauthorized
access, accidentally or deliberately.

Online Chapter

[545]

The advantages of multi-tenancy:-

•	 Huge Cost Saving: There is a huge reduction of cost for hosting each
customer on a separate private server

•	 Aggregation of Data: For all customers for example in a SaaS, FaaS
solution, it is relatively easy to mine customer data in one place for
market research purposes

•	 Collaboration of Data: Certain aspects of customer data can be easily shared
between customers, if both are in agreement

•	 Broadcast Release Management: Releases apply to all customers on a given
set of nodes

The disadvantages of multi-tenancy:

•	 Insecurity: There is risk of insecurity if the application architecture is ill
conceived, or inadequately tested and certified. Although security is the chief
responsibility of the XaaS provider, a serious flaw in the application could be
a gateway to hackers.

•	 High Maintenance Cost: The business data may not be appropriate
for multi-tenant implementation. A plausible scenario is when the gamut
of users outpaces each user's private data segment by more than an order
of magnitude.

Java has supported some idea of multi-tenancy for a while. A Java EE application
server can readily serve separate enterprise applications (EAR), and a web container
may host multiple web applications (WAR). Java EE 7 does not support data multi-
tenancy for a single application.

If the next edition of Java enterprise did add data multi-tenancy into the standard,
then it would be entirely possible to write e-commerce applications in the cloud that
allowed different business customers to effectively share the same storage. Data
multi-tenancy, therefore, will require large modifications to the JPA standard and
may well affect other areas of Java EE, including CDI, EJB, and JCA.

Moving Java EE.next to the Cloud

[546]

The following diagram depicts multi-tenancy in a possible PaaS configuration:

There are two JVMs running on a machine, and each one contains a managed
application server. Two application servers are both running the TIME application
and they share the same database, memory, and resources. A customer that uses
TIME should be completely unaware and isolated from other customers regardless
of which application server is handling their data.

Java EE for the Cloud
In 2012, the expert group was heading toward cloud computing standardization,
until they removed these requirements from the Java EE 7 specification. Java EE 7
was released as a specification on June 12, 2013. So what happened to the cloud parts
of the specification? These details were parked for discussion in the expert group in
the next Java EE release.

The expert group originally conceived that Java EE would function mainly as a
PaaS and have some features of SaaS. The SaaS support is through multi-tenancy
requirements of the individual JSR to make up the overall umbrella standard.

For the purposes of this discussion, since I do not know whether these will be
included in the next standard or be a point release in a future specification, I will
refer to the next Java EE as Java EE.next.

Online Chapter

[547]

Java EE.next adds contractual agreements for business, and their enterprise
developers, targeting the cloud as a deployment environment.

In the earlier Java EE specifications, including J2EE, positioning a load-balancer in
front of a set of clustered Java EE servers provided for service provisioning. In this
traditional deployment model, a request would arrive from an end user client, a
web browser, and then be routed to a particular Java EE server. Each Java EE server
would run a given instance of the application. In common, many of these application
instances would share a single database server. The database would normally be a
relational, and of course, as we know, it is hard to scale relational databases.

Relational database tables are much harder to partition across distributed servers, if
they are to maintain atomicity, consistency, isolation, and durability. It is possible to
replicate tables across systems, however it is always going to slower and costlier.

Because of these current constraints on relational databases' inability to scale
massively on demand, the emphasis has been on key-value database stores, so-called
No-SQL databases. To the average developer, key-value stores look like hash tables,
and from a computer science algorithm perspective one can think of them quite like
that. Key-value stores in the cloud are designed from the outset to be distributed;
the data is easy to replicate across several servers, and therefore it is easier to scale.
There are limitations, however, such as eventual consistency, the lack of two phase
commit transactions.

At the moment in 2013 there is no standard Java API designed for key-value storage
directly; however some providers have facilities that look like Java Persistence
API. Developers might think that they can easily migrate to the cloud, an existing
application written against existing JPA and JDBC application. There are design and
implementation consequences and therefore it might be foolhardy to attempt this
move without a database refactoring plan, partitioning, and execution analysis. It is
simply not recommended.

Moving Java EE.next to the Cloud

[548]

The following diagram is a depiction of the probable Java EE.next cloud platform:

Multiple applications will sit inside a Containerization structure that has generic
infrastructure (in order to support fast auto scaling). The containers are managed
Java EE platforms of multi-tenant cloud applications. Although we cannot be sure
of the actual details, there will be a Persistence Service, which may support non-
relational databases, a Security Service (obviously), and a Messaging Service. The
most crucial of these services will be the HTTP interface layer, which may have
restrictions or could possibly be extended. It is all up for debate.

Perhaps the most important requirement in the Java EE.next cloud platform will
be business rules that will dictate how a provider interacts with the Provisioning,
Billing, and the provisioning services. These have technically nothing to do with
Java EE; however, they require thought on how a satisfactory Quality of Service
(QoS) will be achieved. It is also very plausible that modular applications themselves
will want access to some of this very important metadata about their parent
container.

Java EE.next would explore extending JPA 3.2 to support cloud-computing
deployments and key-value storages. In particular the next standard could possibly
define automatic provisioning through annotations of data source, which would be
essential in on demand situations.

Online Chapter

[549]

In Java EE 7 there is a leak of the original ideas of application cloud provisioning
through the JMS 2.0 annotations. It serves an example of intent. There are
two annotations @javax.jms.JMSConnectionFactoryDefinition and @
JMSDestinationDefinition which can be applied to a Java Servlet or stateless
session EJB. Java EE.next would look to apply these ideas to the other
specifications such as JPA, EJB, Servlets, JAX-RS, and web services.

Currently, the Java EE 7 release does provide containers that already have a degree
of multi-tenancy. It has always been sufficient to cluster a set of EJB end points
across distributed servers using a load-balancer. Scaling endpoints, such as Servlets,
Web Services endpoints, and stateless EJB is not normally an issue. (The key issue
has always been the relational database. Hence certain cloud providers already can
provide a cloud solution around GlassFish 4.0 application server.) Not surprisingly,
cloudifying a Java EE application that makes relatively little stress and demands on
a relational database, for instance one where the application is heavily read-only
database versus write-only database, can be amenable to scaling massively.

Let us look at the responsibilities of Java EE.next in the cloud:

•	 Support for separated instances of the same application for different tenants
•	 One application instance per instant
•	 Tenants correspond to units of isolation
•	 Each instance customized and deployed for a single tenant
•	 Mapping for tenant is sanctioned, provided by the container

Java EE.next would allow single enterprise application to be multi-tenant capable
through discriminator columns in a database server or key-value store. The issue
is how to share this database in a safe, secure, and consistent manner. True multi-
tenancy, however, relies on a future version of the Java Runtime Environment, where
the JVM itself is multi-tenant capable.

Modularity and Java enterprise platform
In July 2012, Mark Reinhold, chief architect of the Java platform announced that the
important Project Jigsaw was delayed. Project Jigsaw is the effort to bring modularity
to the Java platform. The earliest we, mere mortal developers, can expect to see a
standard and statically modular Java Runtime Environment would be in Java 9.

This shock announcement caused, shall I say, a not unnoticeable degree of muttering
amongst the chattering developer classes. There was some unrest in the worldwide
Java community. The knock-on effect is that Java EE is probably not going to have
modularity until Java SE 9 is released.

Moving Java EE.next to the Cloud

[550]

No modularity in Java SE 8, but could we have more profiles in
Java EE?

There is positive news however. Java EE 6 defined profiles,
web and profile. So it is entirely possible that Java EE 8 and
the expert group could define additional profiles in the future
editions of the specification.

Cloud deployment features
The whole point of cloud computing is to make life easier to deploy modular
applications into an infrastructure that can automatically scale dynamically. The
business can add more servers (and machines) in to order scale horizontally and
also scale the resources on a single machine in order to scale vertically. Cloud
computing makes this easier without losing business, stopping an application and
then restarting it. It all happens seamlessly, and this only can happen foreseeably in a
Java EE.next platform that supports modularity and a notion of versioning.

Cloud computing is perhaps new to most Java EE developers. Essentially to move to
a cloud solution involves:

•	 Defining a cluster infrastructure. How do you want the application to
scale out?

•	 Define a quality of service agreement. What services does your application
need? When does it need them?

•	 Deploy the application to the cloud. Have you decided on a monitoring plan?

We covered the essentials of cloud computing and its association with the Java
platform. The Java EE 7 originally defined a set of business and application
developer roles and extended them to PaaS cloud computing platforms.

Java EE.next roles
The Java EE.next standard defines a set of roles that are common to all platforms.
The roles are associated with responsibilities, and while you do not have to be
overly familiar with them, you should be aware of their existence. The standard
defines these roles in a strict separation. It is up to the Java EE implementations and
providers to decide how they make these roles available to the software developer.

Online Chapter

[551]

Java EE product provider
The Java EE.next product provider is the role reserved for the provider of the Java
EE components and application programming interfaces. It is the responsibility of
the Java EE.next product provider to make the API available through the defined
containers. The product provider is normally the enterprise server vendor, web host
vendor, the middleware vendor, a vertical industry specialist and vendor, or, in the
case of a business like Oracle, a database vendor. It can also be an operating system
provider, for example like Red Hat does through Linux, and since Java EE 7 it can be
cloud service provider.

Application component provider
The role of application component provider is the role of the person who generates
a specific component. Exactly how the component is created varies according to the
skill set. It may be an HTML5 and CSS wizard, a specific enterprise developer, or
database schematic export. The application component provider may use tools in
order to generate application components. The tool could be straightforward, such
as an everyday Java IDE. The tool could be special and it might be a code generator.
We do not preclude specialist tools such a model-driven architecture, vis-à-vis Eric
Evans. In this case, the input is a domain specific language and then one would use a
special tool like Eclipse's XText or JetBrains' Meta Programming System to parse the
DSL, semantically analyze it, and then generate components.

Whether a tool is used or not used, the end result for the application component
providers are a set of components that are compatible with Java EE.next, such as
an EJB, a Servlet, Message, or Web Service endpoint, which then can be bundled
together into a Java EE application suitable for deployment.

Application assembler
An application assembler is responsible for bundling together the different
Java EE.next components, such as Enterprise Java Beans, Java Server Faces,
Managed Beans, and other pieces into a complete application. The application
assembler may also configure the base level dependencies between the components
together, and this may be achieved through configuration files. The result is a
fully assembled Java Archive (JAR), Web Application Archive (WAR), and/or
Enterprise Archive (EAR) file.

Moving Java EE.next to the Cloud

[552]

Deployer
The role of a deployer is to take a pre-assembled bundle and then install it on the
Java EE.next server, in fact, into the containers. The deployer is also authorized
to undeploy applications, although some enterprises may decide to further
split this specific role for ultra-sensitive security reasons using the Java EE.next
product features.

During an installation, the deployer takes a JAR, WAR, or EAR file and then uploads
the bundle onto the server. If there is already an application running on the server,
they may have to stop it beforehand. The deployer will then configure the resources
and the facilities that this application requires. Finally, the deployer will start the
application into execution mode. The application, then, is ready to receive web HTTP
and web services requests.

The situation is reversed during an uninstallation. The deployer stops the running
application from execution. After a graceful termination of the application, they will
then remove the instance from the server. Depending on the actual server, if the
situation is warranted, the application's resources can be further removed; database
connections and message queue endpoints can be deallocated and then deleted.

This style of deployment is manual, and the description is
wholly about human interventions. In the cloud environment,
deployment is automated in a style called provisioning.

Systems administrator
The systems administrator is a role specifically separate from a deployer. The
administrator looks after the Java EE.next product. They make sure that it is
operating successfully, that there is enough memory, processes, and CPU time. In
other words they monitor the server and validate its availability, scalability, and
performance over the longer time. If there is a problem with the Java EE.next
product, for example if it runs out of available memory, they are responsible for
getting the entire server back on line. System administrators are those people who
restart the servers very late at night or very early in the morning.

With this tremendous responsibility comes a certain modicum of skills; system
administrators not only need to be infrastructure experts, and familiar with the
operating systems, they will also have database administration skills. A really good
systems administrator will have messaging system knowledge and a notion about
the Java EE.next product, and if they are truly blessed, they will have essential
know-how about JVM garbage collector.

Online Chapter

[553]

Once again, the role of system administrator is different in a cloud computing
environment. They will require all the mentioned skills, and will be rather familiar
with monitoring systems, which aggregate lots of logging, monitoring data across
several server racks. In fact, they will need skills commensurate with a PaaS
engineer. Those skills will include greater in-depth knowledge of partitioning data,
networking infrastructure, regionalization of service, service escalation procedures,
and provisioning of application and data management.

Tool provider
The tool provider role is a specific responsibility for Java EE.next products. The
role of a tool is to assemble Java components for a Java EE.next product server by
eventually producing a JAR, WAR, and/or EAR files. A deployer uploads these
end-product files to a server.

The tool provider role in my opinion is considered legacy and redundant, because
de-factor software already covers this requirement in the specification. Tools such as
Integrated Development Environments (IDEs), such as Eclipse, NetBeans, JetBrains
IntelliJ IDEA, and popular standalone software build tools like Gradle, Maven, and
Ant.

System component provider
The system component provider role is responsible for interfacing between systems
that are not necessarily Java compatible. Environments that required Java Connection
Architecture (JCA) are those that require a specialist provider. System components
can be messaging systems, environment where there is a requirement for Enterprise
Application Integration, and remote web services. Often these other systems are
written in other programming languages and platforms. An example of such a foreign
system would be a mainframe system.

Refactor out Java connector architecture
In 2003, a bank had already realized that they could not rely on this
transaction manager to control storage of data into multiple resources,
databases, and EJB. The client instead decided to avoid using the JCA
implementation, then, newer J2EE projects. The licenses to upgrade the
JCA product proved to be exorbitant. Every upgrade of the application
server product caused a testing phase with the JCA implementation. The
bank simply had no choice but to verify the operation of the application
with the JCA dependency before they could upgrade to a new application
server version. In the end, another department in the same division, in the
next year, wrapped a XML SOAP web service interface around the JCA.
The moral of the story is to first look at open source solutions before getting
yourself locked into vendor, and then, even then, always hedge your bets.

Moving Java EE.next to the Cloud

[554]

Cloud PaaS provider
The role of cloud provider describes any entity that hosts a Java EE.next product
in a cloud computing environment. The responsibility of delivering a standard
conforming product with the qualified Java EE.next application programming
interface lies with the cloud provider.

Cloud PaaS tenant
The cloud tenant is a customer, an individual, a business, including a legal entity
that subscribes to a Cloud Provider and has one or more applications hosted on the
Cloud Provider cloud-computing platform.

Cloud PaaS application submitter
The cloud application submitter is a specific role with the responsibility to upload
and install (and of course uninstall) Java EE.next applications to the cloud
provider's cloud computing platform. The submitter configures the application and
ensures that the resultant artifacts, such as JAR, WAR, and/or EAR are suitable for
the target cloud computing platform.

The standard makes a differentiation between a tenant and submitter, because they
may not share the same position in some circumstances. An example of this could be
a software house that provides dedicated over-the-counter services to a business.
The business customer ultimately could choose a third-party supplier to deliver
cloud computing services with an existing business application.

Cloud PaaS account manager
The cloud account manager is responsible for managing the account of the
tenant. This person decides whether to allow scaling of resources across the cloud
computing platform. The account manager will buy resources on expected sales
days, and reduce resources in the holiday season, when business is off-peak. This
role is a further indirection for the purpose of business. An account manager could
be a third-party business managing resources for two or more tenants, for example.

Online Chapter

[555]

Cloud PaaS application administrator
The cloud application administrator is a further distinctive role for maintaining the
availability of the business customer's application as it is running inside a cloud
computing environment. The role is different from a system administrator as it has a
smaller subset of responsibility. The application administrator ensures the tenant is
running by monitoring resources such memory, disk space, and network bandwidth.
There might be limits imposed by the cloud provider, which is responsible for the
cloud Java EE.next product, to restrict the business tenants from interfering with
each other. The very likely restrictions would be security imposed on operating
system permission, database table access, and network ports.

A future Java EE.next specification should reduce the role types and retire
redundant roles. In my opinion, the application assembler and tool provider are no
longer relevant. I do think that a cloud PaaS resource manager is an extra role that
could be useful. Businesses will want to monitor, manage, and control how much
money and dedicated hardware goes into supporting a scalable application.

Java enterprise providers in the Cloud
At the time of writing, there are only two Java EE product providers so far, GlassFish
application server, which is the reference implementation for Java EE 7, and also Red
Hat JBoss application server.

Following are the current providers in the cloud-computing arena that have
varying degrees of conformation to the Java EE specification. All of them allow Java
application to be deployed from their platform through a bundling service, which
might be a WAR and/or EAR.

In some cases, there are alternative means to deploy an application other than a
Java Archive format, which demonstrates the split between the application
component provider, deployer and the tool provider. Heroku permits and prefers
application to be deployed using the Git tool, which is an open source distributed
version control tool.

Moving Java EE.next to the Cloud

[556]

This is the view of the cloud providers a couple of months after Java EE 7 was released:

Product Name Vendor Java EE 7
Support

Java EE Conformance Notes

Amazon
Beanstalk

Amazon No
(Push
deployment
and changes
with
proprietary
Amazon
tools.)

Amazon supports
Java 1.5 upwards.
Deployment through
simple WAR files. PaaS
is through specific
Apache Tomcat
extension. Only Java
Servlet 2.2, Java Server
Pages support is
available.

AWS might
allow SEAM
Framework
and JSF to run
as separate
JAR uploaded
to WEF-INF/
lib. Beanstalk
supports all
popular Amazon
services, Elastic
Compute Cloud
(EC2), Map
Reduce, Simple
Storage Service
(S3), Simple DB,
and so on.

Cloud Bees Cloud
Bees, Inc.

Yes
(Push
changes with
Git. Some
SVN support
is available.)

A PaaS solution for Java
offering complete end-
to-end environment.
As of June 2013, Cloud
Bees offers deployment
to GlassFish 4 container
in the cloud with
MySQL support.
Cloud Bees was the first
Java EE 7 PaaS solution
in a cloud environment.

Cloud Bees is all
about supporting
building
continuous
integration/
delivery
applications in
the cloud. If you
love Jenkins
then you will
probably like this
offering.

Cloud
Foundry

VM
Ware

No Cloud Foundry calls
itself a PaaS solution,
however it has a certain
IaaS style by allowing
the customer to choose
amongst a set of
platforms that includes
Spring, Grails, Scala,
Play, node.js, Ruby,
Rails, Sinatra.

Professional
open source PaaS
solution. Java is
not exclusively
supported,
whereas Spring
Framework is.

Online Chapter

[557]

Product Name Vendor Java EE 7
Support

Java EE Conformance Notes

Google App
Engine

Google No
(Deploy
changes with
WAR files.)

Java EE 6 support
is restricted to Java
Persistence Architecture
and parts of the Java
Servlet. Java Runtime
Environment is limited.
You must use Google's
own thread factory to
spawn limited threads.

Restricted PaaS
availability.
Relatively easy
to build, scale,
and maintain.
Support for
Groovy,
GWT, Spring
Framework.

Heroku PaaS Heroku Maybe
(Push
changes with
Git.)

Applications are
deployed to the Heroku
cloud with embedded
server (so called
container-less build.)
The Java EE 7 reference
embedded GlassFish
4server ought to work.

Heroku
PaaS expects
application
to bootstrap a
server. Tomcat
and Jetty are two
servers known to
work.

IBM Smart
Cloud

IBM No
(IaaS like
to push in
order to
deploy and
provision
applications.)

Provides a set of
technologies with both
IaaS and PaaS type
capabilities with the
concept of supporting a
virtual appliance.

Commercial
offering is a
virtual stack of
the application,
addition
libraries, and
the operating
system.

Java / PHP
PaaS

JElastic Yes
(Push
changes
with Git and
SVN.)

Billed as Java/PHP and
cloud hosting platform
that can scale any Java/
PHP application with
any unnecessary code
changes.

James Gosling at
Liquid Robotics
made use of
GlassFish 3.
There is a high
chance that
GlassFish 4 will
also work.

Oracle Cloud Oracle Not Yet* Since Oracle is backing
the GlassFish server
and also WebLogic
server. At the time
of writing Oracle has
future plans to provide
Java EE 7 and Java SE
6 WebLogic server
offerings in the cloud.

The Oracle
Cloud is the
professional
upgrade path
from GlassFish,
but it may have
restrictions.

Moving Java EE.next to the Cloud

[558]

Product Name Vendor Java EE 7
Support

Java EE Conformance Notes

OpenShift Red Hat Yes and Not
Yet*
(Push
changes with
Git.)

PaaS solution for
developers to build,
test, run, and deploy
applications. Open
Shift does run Glass
Fish 4 with extra
customization.
JBoss WildFly, which is
Java EE 7 compliant, is
assumed to work Open
Shift.

A neat idea of
Open Shift is
the notion of
nodes, gears,
brokers, and
cartridges. These
are pluggable
facilities to
connect to
other popular
frameworks.

At the time of writing, only Cloud Bees had announced the availability of a full Java
EE 7 PaaS solution. Red Hat offering of JBoss WildFly application server is targeted
at a fully compliant Java EE 7 application server, which means it will be available
to the OpenShift PaaS solution. Red Hat had yet to announce this feature, however.
The Oracle Cloud solution, unfortunately, looks like the slowest person on the drive,
because it only supported Java SE 6 and Java EE 6 at this time.

It is clear from these offerings in PaaS for Java EE 7 that providers vary in the control
of the provisioning. Heroku, in particular, expects your application to bootstrap and
start an embedded server, whereas Cloud Bees offers GlassFish 4 managed instance
controlled by the cloud provider, but bound by your own administration. JElastic
apparently gives the application and the business a lot of control, so much so that it
moves closer to the infrastructure as in IaaS. This is probably the reason that James
Gosling preferred this high degree of control as well as the attractive open source
technology of JElastic for the Liquid Robotics oceanographic communications and
network architecture.

Online Chapter

[559]

The cloud providers are following the fashion of continuous delivery deployments
by supplanting WAR deployment with pushing artifacts through a distributed
version control such as Git. For Heroku, who are one of the pioneers of version
control deployment, it is their sole mechanism to get an application into their cloud
offering. Heroku started as a Ruby-on-Rails vendor because they knew that market
very well through the founder and then branch out to other languages including
JavaScript with node.js, then added Java and even Scala support.

With these differences in provisioning, resources, deployment, and monitoring
and even ultimately how does an application scale effectively, it is transparent and
comprehensible why these fledgling efforts in the wider cloud computing movements
could not be standardized in the Java EE 7 specification and its time frame. Hopefully,
PaaS solution providers in the future will get together to agree a standard measure of
console management and provisioning in the next Java EE specifications.

Currently, developers write Java EE 7 applications on their own machines or the
company's machine and then provision it on to the provider's PaaS environment. In
future, this practice could change so that PaaS applications may be developed in the
cloud itself.

All of the compatible Java EE 7 PaaS solutions aim to take care of the business
infrastructure so that the customer concentrates on their focus around their own
business logic. This is the logical part of the business that makes each application
unique. The PaaS infrastructure handles high availability, scalability, and on-demand
provisioning of resources. The difference between each Java EE 7 PaaS solution
currently is how they achieve this provisioning, the limits of their own particular
environment, and how much the customer can control the process, and of course the
cost of the solution.

Minimize Lock-in

As application architect, you should expect some vendor lock-
in. For instance, if you are searching for a PaaS solution for a
particular framework or language or even a Java EE 7, then you
need to find a PaaS that supports it.

Ask yourself the question, "What do I really have to do, if I
especially have to move my business application off that PaaS
solution in jig time?"

Moving Java EE.next to the Cloud

[560]

Summary
There are several Java related products available today for Java developers,
designers, and architects. Unfortunately, many of them are proprietary and if you
invest your time and business into them, although they advertise as easy to get, they
will lock you into the vendor, because you will have to develop against their API in
order to get the maximum benefits.

Take, for example, Google App Engine, which defines a white list of the only Java
API that you are allowed to develop against. The same conundrum applies to
Cloud Foundry and, of course, to close proprietary API inside Microsoft Azure and
Amazon Beanstalk.

It is expected that Java EE 8 will be a standard that gives businesses the benefit of
portability between cloud computing providers. We, the architects and designers,
should see a huge benefit in the economy of business, when Java applications can
switch cloud provider in order to save costs and increase performance. It is an idea
that must be planned for. Only you, the rest of the community, JCP specification
committee, and expert groups for Java EE.next can make it happen. So please go
and prod your local Java User Group or better yet get in contact with the Expert
Group and send them your suggestions, criticisms, and ideas.

The cloud computing mantra is about three items, namely:

•	 Provisioning: This is the ability to deploy an application to multiple servers
and automatically associate the application with resources it requires to
function through allocation by configuration

•	 Elasticity & Automatic Scalability: This is the ability to scale an application
on demand

•	 Multi-Tenancy: This is the ability for a cloud provider to host multiple
applications from different business subscribers, who normally are separate
legal entities as defined by the governing jurisdiction

As the cloud computing platform takes shape on the server side in the remaining
years of this decade, we shall expect a new edition of the Java EE specification.

