
.NET Languages and
its Construct

In this appendix, we will cover:

 f Evolution of the .NET language

 f Working with language features

 f Advantages of Generics in .NET

 f Using iterator blocks in .NET

 f Working with LINQ and Lambda expressions

 f Using Dynamic objects in .NET

 f Compiler as a service

Introduction
As we already know most of the basics of .NET core, and the architecture of the .NET
environment, another important part of the framework, that I have rather ignored in the
book is Languages. .NET is a repository of more than one language. During the initial release
of .NET Framework, Microsoft released a number of languages, each of which were quite
different in their syntaxes and targeting some set of programming. Languages are tools for
an application developer. Supporting so many languages made it more versatile and widely
acceptable. Notably, the most important languages released during its inception is C# and VB.
NET, where C# is targeting people who are confident on C++ programming style and VB.NET
is targeting towards Microsoft's existing customers who works on VB. But the important thing
is both of these languages or any other languages targeting .NET Framework share the same
base class library and can easily interoperate between each other.

.NET Languages and its Construct

2

The languages are actually provided with compilers (CSC for C# and VBC for VB.NET) that
produce the intermediate language. As each of these languages are the same when converted
to Common Intermediate Language (CIL), the two assemblies from different languages can
easily communicate and be called from each other.

The benefits of .NET Framework languages are as follows:

 f A large number of languages targeting the same framework

 f Interoperability of application code built under different languages

 f Language development can spread outside the Microsoft domain, as the Common
Language Specification is standardized under ECMA

 f The learning curve is adaptable, as you can choose the language that you are
comfortable with

 f All languages gets updated when a new release of Framework is updated

 f Easier installation of applications as assemblies are not machine dependent code,
and do not need redeployment for every platform, rather it works as XCopy

 f No need to install runtime when you need to run .NET applications, as the runtime is
automatically shipped with Windows

The benefits of .NET Framework are enormous. .NET framework is built into a large number of
assemblies, each of which is logically separated into namespaces.

A namespace is a logical separation of one type with another. A
namespace is created for each type, and when the type is read the
valid path of the entire namespace is required. For example, if a type
MyType is defined inside a namespace MyNamespace, the type can
only be accessed using MyNamespace.MyType. Inside a namespace,
you can define: namespace, class, interface, delegate,
struct, and enum.

The namespaces separates one type from the other, for instance System.Collection
namespace holds all the types that deal with a collection of objects. On the other hand, any
type that deals with input/output should not be written inside System.Collection, rather
should stay inside System.IO.

.NET also allows you to specify your own namespace. When a namespace is defined locally,
you can easily access the namespace defined in the Framework using the global:: keyword.

Inside these namespaces the .NET Framework defines a huge number of classes. These
classes generally deal with everything that you can think of, and they are also getting more
and more enhanced as time progresses. Hence, most of the things that you might require to
implement may be already implemented inside the .NET Framework. Using .NET languages
you can invoke these types and properties.

Appendix

3

Evolution of the .NET language
As a developer, languages are used to produce applications and use .NET Framework core
APIs. As you already know, .NET language is compiled to CIL, hence the use of the compiler
is only to convert the high-level language to CIL. There are a number of languages that were
introduced from the very birth of the Framework. Each of the languages that are built on top
of .NET Framework follow some basic principles. These principles are defined as Common
Language Specification (CLS). CLS defines the standard of the IL which the languages should
follow when the compiler is built. The CLS is designed to include the entire basic construct
that each language needs to implement to make the language CLS-compliant. The CLS
compliance means that the code that is written follows the standard rules and restrictions
applied by CLS.

Most of the languages follow a large part of the CLS document, but there are exceptions too.
For instance, C++ allows multiple inheritance which is not actually there as a set of standard
rules of CLS. Another instance can be C# which allows you to write unsafe code. The type
defined in unsafe code is not CLS-compliant. Hence some languages do follow CLSs, but as
each language has its own domain of activity and is built for some specific set of applications,
this language implementation differs in terms of few exceptions to CLS.

But recently, Microsoft has focused on implementing the missing feature of one language
into other, so that these languages can be made almost identical rather than syntactically
different. During the phase of development of languages, a large part of language
implementation goes in languages C# or VB.NET; these languages are getting richer and
richer day by day. In this recipe, we will see how the languages in the .NET Framework have
been enhanced with new releases of .NET Framework, and see some basic introduction
of the features that comprises the version.

Let us demonstrate the evolution of languages using an image depicting the different stages
of the C# language.

Asynchronous Programming

Dynamic Capabilities
+ (Task Parallel Library)

Language Intergrated Query (LINQ)

Generics

Managed Code

C# 4.0

C# 5.0

C# 1.0

C# 2.0

C# 3.0

Various Stages of C#
Evolution

.NET Languages and its Construct

4

The preceding figure depicts the various stages of evolution of the C# language. C# as a
language has changed a lot from its inception. It was introduced with the introduction of .NET
Framework, and at that time it was basically a new language that supported managed code.
Now let us depict each evolution step one by one.

1. The first release, C# 1.0, was all about building a new language that supported the
managed code environment which was introduced with .NET Framework.

2. C# 2.0 introduced Generics. It was a new feature that deferred a type to be passed
to another type at runtime in such a way that each type was determined at runtime
when the object was created, and yet the type safety was maintained.

3. C# 3.0 introduced a few huge advances, such as WPF, WCF, WWF, and Windows
Cardspace.

4. C# 3.5 introduced several functional programming constructs to the language
including Language Integrated Query (LINQ) syntaxes. LINQ is a new language
feature that allows you to query object code at runtime.

5. The fourth release of C# 4.0 introduced the Dynamic language feature. The Dynamic
Language Runtime (DLR) capability of the language defered type checking to
runtime allowing you to call members to a runtime object, and type checking during
compile time was not performed.

6. The fifth release of C# 5.0 introduced the new async feature which allows you to write
an asynchronous code block instantly with two contextual keywords in the language
called async and await.

As we have introduced all the evolution points of C# language, it would be a good idea to
explain each of these evolution steps and get a deep idea about them.

C# 1.0 introduced managed code. Managed code is CLR managed. The managed code
execution specifies a contract between the code that is running inside CLR and the code that
runs natively. The contract specifies that at any point of execution, the runtime can stop its
execution and query information about the CPU instructions, and fetch the state of the objects
in memory. Just in time (JIT) compiles managed code (IL) into the native environment during
execution, and can guarantee certain things like garbage collection, exception handling, type
safety, array bounds, or even index checking. JIT is also free to modify the order of IL execution
to optimize its performance.

static void Main(string[] args)
{
 Int32 i = 10;
 int j = 10;

 Console.WriteLine(i == j);

Appendix

5

CLR uses the same framework for every language. In the preceding code, both the values are
equal and int is an alias of Int32. During compilation the language aliases are converted to
actual type supported by the Framework.

C# 2.0 introduced Generics. It refers to a technique to defer the declaration of a type which
is defined as a template during compilation, and the type is referred when an object is
instantiated. Generics ensured reusability with type safety.

public class Generic<T>
{
 public T myGenericTypeField;
}

//Call
Generic<int> gint = new Generic<int>();
Generic<string> gstring = new Generic<string>();

In the preceding code, the Generic type allows you to pass a type as a template. It creates
a member of the type T inside it. Hence, during its object creation the gInt will define the
myGenericTypeField as integer, and gstring as string.

C# 2.0 also introduced anonymous delegates, iterators, and partial classes. We will discuss
them in detail later in this appendix.

C# 3.0 introduced LINQ that allows querying runtime application data. The language comes
with constructs leveraging existing knowledge of database in application environment.

var contacts =
 from c in customers
 where c.State == "WB"
 select c;

Here say customers are a collection from which we select each object, and check whether
it belongs to "WB". The final contacts will hold all the customers that belong to "WB". var
specifies the implicitly typed variables. That means it will be replaced by the appropriate type
during compilation. Here the type of contacts will be IEnumerable<Customer> if customers
are a collection of customer type.

C# 3.0 also introduced anonymous types, extension methods, generic delegates, auto
implemented properties, and so on. It is discussed in detail in the book.

.NET Languages and its Construct

6

C# 4.0 introduces dynamic language runtime. Programming languages are generally either
statically typed or dynamically typed languages. C# is generally considered as a statically
typed language while JavaScript, python, and so on are dynamically typed languages.
Dynamic languages do not perform compile time type checks and identify the type of objects
at runtime. C# 4.0 allowed dynamic elements to improve interoperability with dynamic
languages and frameworks. The C# team introduced a new keyword dynamic that deals with
dynamically typed objects.

static void Main(string[] args)
{
 dynamic mydynamicobj = new string();
 mydynamicobj.MyProperty = 10;

}

The preceding code will compile but as the mydynamicobj reference holds an instance of
string, it cannot call MyProperty at runtime. So runtime will produce errors even though
compile type checks are totally neglected.

With dynamic features, C# also introduced a number of interesting concepts like generic
variance, optional parameters, and so on. We will discuss them later in the appendix.

C# 5.0 introduced a new approach of programming style called asynchronous coding pattern.
Asynchronous programming is not new to the language. There were a number of possible
ways to define asynchronous code blocks even before the introduction of C# 5.0. But the
enhancement actually introduced two new contextual keywords, namely async and await to
work with async code blocks. The keywords help you to write async code blocks in almost
similar fashion like the synchronous blocks.

public async void MyAsync()
{
 await Task.Delay(1000);
}

The preceding code block actually puts a delay on the task. The code runs asynchronously
without waiting for the execution of Task.Delay to finish. We have discussed more about
async in the Working with async and await patterns recipe in Chapter 3, Asynchronous
Programming in .NET.

Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Appendix

7

Why is Generics important?
Generics is one of the best additions to the .NET language ever released. Generics helps you
to pass a type to an existing collection when the object is created. In .NET Framework, the first
thing you notice on a valid implementation of Generics is the new set of collection classes.
The use of generic collection classes are always recommended. Let us take an example;
a collection generally holds a number of elements. In the case of .NET Framework before
the inclusion of generics, there are a number of collection objects that store the collection
elements as objects rather than a collection that has an associated type attached. Now let
us suppose the collection is of type Int. Hence to hold a collection of integers, each integer
needs to be converted to object type. This conversion from ValueType to reference type
is sometimes referred to as boxing. Boxing includes additional memory allocation, as the
boxed element is transferred to a managed heap rather than storing on the stack. On the
other hand, whenever we want to get a value from the collection, we again need to unbox
each individual element from the collection. Generics allows you to specify the type for which
the collection is meant. So in the case of Generic collection, during the creation of its object
we can specify that the collection will hold a number of integers, and it ensures that each
elements of the collection are actually integers.

Hence, Generics removes the additional overhead of boxing and unboxing on values and
hence increases performance.

.NET recommends to use List<T> instead of ArrayList, and Dictionary<T1, T2>
instead of HashTables, because the former supports generic implementation while the later
doesn't. There's lots of generic implementation going on inside the .NET library, and the old
non generic collection classes, even though they still exist, are widely depreciated. We will
look more in detail about Generics in coming recipes.

What are extension methods?
Extension method forms special meaning to the compiler. Extension methods allow you to
extend an already defined type without recompiling, or modifying the type, or even inheriting
the type to another type. It is actually defined as static, but acts as an instance specific
method. In other words, even though the code that is running inside the extension method is
not declared within the scope of the class, it is still associated with an instance of an object
for that particular class. Extension method does not need to be in the same namespace,
whereas the actual type does. Hence you can easily add an extension method anywhere
outside the namespace and any other static class. The namespace, which when added to the
code will automatically add those extension methods, and call appropriately for an existing
type. Extension methods can also be thought of as an extension to a pre-existing type.

.NET Languages and its Construct

8

For instance, let me define a class first:

public class MyClass
{
 public int MyMethod()
 {
 Random rand = new Random(100);
 return rand.Next();
 }
}

This is a very simple class with one method MyMethod that returns an integer value. Now,
how to extend the class to add another method, say MyMethod2? There are a couple of
options available for you, either you need to extend this class to another type MyClass2
derived from MyClass and include that method into it, or use an extension method to add
it directly within the type MyClass itself.

public static class Extensions
{
 public static int MyMethod2(this MyClass obj)
 {
 return 10;
 }
}

MyMethod2 is now an extension method that is included with MyClass. You should
remember that an Extension method is static with the first argument being of Type in which
the method is to be included with a this keyword before it. This identifies it as an extension
method. Any parameter can be passed normally after the first argument.

By the way, you can even make MyClass sealed (not extensible), and yet you have the option
to use an extension method to extend the type.

What are partial classes and partial methods?
Partial classes allow you to divide your own class into one or more files, but during runtime the
files would be merged to produce a single coherent object. In this way the classes could be
made very small and easily maintainable even when the type as a whole remains quite big
in size.

The most important part of a partial class is the designer. While you work in Visual Studio, you
must have found a portion of code that is generated automatically by the designer. Designers
create a class which keeps on refreshing itself when certain modifications are made in it.
Partial classes allow you to create an alternate implementation of the same class, so that
the code you add to the class does not go out when the designer is refreshed.

Appendix

9

Partial methods are another new addition to .NET languages that allows you to declare/define
the same method more than once. Microsoft introduced the concept of the partial method
to deal with designer-generated code, and to allow reserving the name of a method that one
needed to be implemented later in original classes. In this way, the designer will not produce
any warning without implementing the actual method, but will allow future developers to
implement or write their own logic on the same method that is defined.

partial class MyPartialClass
{
 public void MyNormalMethod()
 {
 Console.WriteLine("Inside first Normal Method");
 }
 partial void MyPartialMethod(); //It is declared and will be
defined later in another partial class
}

Let us suppose MyPartialClass is generated by the designer. It declares the method
MyPartialMethod, which I have not defined yet.

partial class MyPartialClass
{
 //public void MyNormalMethod()
 //{
 // Console.WriteLine("Inside second Normal Method");
 //}
 partial void MyPartialMethod()
 {
 Console.WriteLine("Inside second Partial Method");
 }
}

In another implementation of MyPartialClass, I have defined the method
MyPartialMethod, that holds the actual implementation of the code. So if I create an object
of MyPartialClass, it will hold both methods MyNormalMethod and MyPartialMethod,
and whenever it is called it calls appropriately.

Another thing to note is that the implementation of the partial method is not mandatory.
If you do not define the partial method in another partial class, it will eventually be
eliminated completely in runtime IL.

.NET Languages and its Construct

10

The limitations of a partial method are as follows:

 f Partial method is by default private. Hence you can only call a partial method from
within the partial class.
partial class MyPartialClass
{
 public void MyNormalMethod()
 {
 Console.WriteLine("Inside first Normal Method");
 this.MyPartialMethod();
 }
 partial void MyPartialMethod(); //It is declared and will be
defined later in another partial class
}

Thus even if you do not declare the method MyPartialMethod, you can even call it
from within the class. During runtime, CLR will automatically call if it is implemented,
or will eliminate the call completely from the system.

 f Partial method needs to be declared inside a partial class. A partial class is
only capable of redefining the part later in another file. So, it is essential to mark the
class as partial as well when it has a partial method.

 f It cannot be marked as extern.

 f It must have a void return type, and also cannot use out parameter as argument.

Partial method does not allow us to write as virtual, sealed, new, override, or extern. Even
though it is very rarely used in real life, it is still worth knowing.

What are Caller attributes and how they are used?
Caller attributes is a new feature introduced with .NET 4.5 which allows you to obtain various
information about the program that is currently running. We generally track information about
line numbers, source file, and so on either from the stack trace created from exceptions
or manually using call stack information available to Visual Studio while debugging the
application. But from the actual code or during runtime of the application, this information is
somewhat hidden for a long time and even though it exists while running every line of code, it
is not available for use in general.

With the introduction of caller attributes, the framework gives an API that allows you to get
information, such as CallerMemberName, CallerFilePath, or CallerLineNumber while
executing a function. The attributes can be added to the caller function in such a way that
when the method is called, the .NET runtime will fill this data with the data that is available
to it. Hence, you can use those parameters in our code.

Appendix

11

Say for instance you are creating a logger functionality in your code. For doing a log, it is
always important to trace this information and write to a file in such a way that whenever
tracing the file, you can easily determine the exact line which executed for a particular log
entry. For instance, to get the line number, you generally need to manually enter the line
number on every line you log, and when you change certain areas of code, you need to again
sync all the log entries. But with caller attributes, you do not need to manually keep track of
the lines, rather the program gets these values during runtime.

static void Main(string[] args)
{
 LogThis("This is a blank sample Log entry");
 Console.ReadLine();
}

static void LogThis(string actualMessage, [CallerMemberName]
string membername = "", [CallerFilePath] string sourceFile = "",
[CallerLineNumber] int sourceLine = 0)
{
 //Log these information
 Console.WriteLine("Source {0} {1} Line {2} : {3}", sourceFile,
membername, sourceLine, actualMessage);
}

Here in the preceding code, the LogThis method will log the source file, the member name,
and line number. Any CLR method automatically gets these values for the caller method when
the arguments are annotated with these attributes.

In the preceding screenshot, the application prints the message with the path of the source
file, the exact line number, and the name of the method. These information were available
during runtime, but was not exposed before. But with the introduction of Caller attributes,
these information are now readily available to any application code. Basically if you look
into the internals of the attributes, these attributes are actually replaced by the calls during
compilation. Thus during compilation, the parameters are replaced directly with the values.

Working with language features
Classes are the major components of any programming model. .NET comes with a huge
set of classes that are categorized into multiple assemblies. These classes are designed
and developed using the .NET languages. In this recipe, I will address some of the special
implementation of types that form special meaning to the compiler.

.NET Languages and its Construct

12

When you think of data types of a language, you always think of variables which store values
inside. These data types are either mutable, which when you assign to another instance
of object copies itself as a value. For instance, most of the basic data types, such as int,
float, double, long, and so on, are types that are mutable and called as ValueTypes in
.NET language. Whereas some are actually copied references of the object that have been
created and when the object is modified, it will affect all the references that has its pointer
referred to. Virtually any type that we define as a class is actually a Reference Type object.

As .NET is purely object-oriented, every object that you create in .NET is actually derived from
the parent System.Object. Hence if you do not specify anything in the inheritance hierarchy
it will put Object at its base. When the object that is created is a ValueType, the types will
be derived from System.ValueType. Thus when an object is actually derived from System.
ValueType, it will be treated by the compiler specially and it will create a mutable instance of
the object. Languages restrict any object to be derived from System.ValueType, and hence
to define a custom type that derives from this type and get special meaning to the compiler we
define struct.

In this recipe, we are going to cover all the most important types that form a special meaning
to the compiler, and give you a brief introduction to each of them and their usage.

Getting ready
To start with the recipe, let us describe some of the basic types that form a special meaning.
This will give you a prerequisite on what those types basically are.

 f Class: A class is a basic entity of a program. When we create a class, it either inherits
from the custom class that we specify, or it inherits from the type we specify.

 f Interface: Interface is a special type that acts as a contract on an object. An interface
defines the structure of a type, and when you use this interface for a type, you need
to fully qualify each individual definition of the interface implemented within the type.

 f Struct: A structure is a special type that is automatically derived from System.
ValueType and restricts inheritance on the type. A struct is generally created as
mutable and allows to group a set of data elements. It is recommended to create a
class type when the size of struct is greater than 16 bytes.

 f Delegate: A delegate is a special type that is derived from System.Delegate, and
forms a special meaning to the compiler. A delegate is a type that can hold a method.
You can assign a method to a delegate when the type of the method matches the
type of the delegate, and you can send the delegate anywhere in the code. The
delegate can be called using the Invoke method, to call the method which it is
assigned to.

Appendix

13

 f Event: An event is a special kind of construct in the language that actually forms a
wrapper to a delegate. An event has event subscription and actually uses delegate
internally to store the methods/event handlers we pass to the event. When an
event gets executed, all the methods that have been assigned to the event will be
called sequentially.

 f Enum: Enumerations are special types in .NET that are derived from System.Enum.
An enum is an enumerated data type which gives names to the values of a domain
of data.

Now let's deal with all of these one by one in this recipe and look at the basis of each of them.

How to do it...
Class is the basic unit of programming. In the .NET environment, everything that we write is
within a class. .NET being a truly object oriented language you start building your application
from a class. Let us create a WindowsFormsApplication project and add a class into the
project, we'll call it MyType.

1. Create a structure and define a few local members in it. Let us name our structure
as MyStruct.
public struct MyStruct
 {
 int IntegerValue { get; set; }
 string Message { get; set; }
 }

You should note that struct is not a recommended type. Although you can define it,
you may want your type to be immutable and also have a size less than 16 bytes long;
otherwise, it is better to use a class instead that performs faster than struct.

2. Once you have created the structure, let us create an object of the structure within
the body of the class. When we specify any type inside the scope of a class, we call
that a member object for that particular type.

3. Now let's define a delegate. A delegate as I have already introduced is a special
type that can point to a particular method which follows the delegate signature. For
instance, I define a delegate as follows:
public delegate string CallMeDelegate(int x, int y);

This means this is a type that can point to a method which takes two input elements
and returns string. Let us define a method inside the class to actually implement
this functionality.
public string CallMe(int x, int y)
 {

.NET Languages and its Construct

14

 return string.Format("Value of X passed is {0} and the
value of Y passed is {1}", x, y);
 }

So the preceding method as defined actually takes the input and returns them as
a message.

4. We would call the delegate by using a variable of that type. Let us define a property
of the delegate and try to point the same to the method.
public CallMeDelegate MethodStore { get; set; }

5. To this MethodStore object we can assign the method CallMe. You should note
that as this MethodStore is public we can also assign a method from the object
outside the class. To assign the method to this MethodStore we just call:
this.MethodStore = this.CallMe;

Note that when we are passing the method body to the object of the delegate, we
actually don't need to specify the braces and the parameters. It needs to be specified
when we actually call the MethodStore object. In addition to this, you should also
note that a delegate actually maintains a collection of methods inside it, so if you
specify more than one method inside a delegate, all those methods will be called
at once whenever we call the delegate.

6. In .NET we generally do not expose a property of a delegate object outside the class.
.NET implements a new pattern that enables a type to subscribe to a delegate and
unsubscribe from it using the event pattern. Even though the event is just a syntactic
sugar to the actual underlying delegate, it is better to know exactly how to define
an event.
private event CallMeDelegate _mymethodcalled;
 public event CallMeDelegate MyMethodCalled
 {
 add
 {
 this._mymethodcalled += value;
 }
 remove
 {
 this._mymethodcalled -= value;
 }
 }
public string OnMyMethodCalled(int x, int y)
{
 if(this._mymethodcalled != null)
 return this._mymethodcalled(x,y);
 return string.Empty;
}

Appendix

15

So in the preceding code we have defined a private event variable
called _mymethodcalled and its corresponding event accessor. The event
accessor gives you a method stub that will be called whenever the event is
subscribed or unsubscribed. Now, you can also see that I have defined a method
called OnMyMethodCalled. It is important to note that as we have exposed the
event, it is not always true that the event is subscribed by the caller. Say for instance,
we generally have the mouseUp or mouseDown events on a button, and if we don't
need any body for that event we do not specify that to the type. OnMyMethodCalled
actually determines whether the event handler is assigned or not. If nothing is
assigned, the event object will be evaluated to null.

7. Once you define an event, you can now create an object of the type, and subscribe
using += sign and unsubscribe using -= sign with the appropriate method that we
call EventHandler.
MyStruct structObj;
MyType typeobj = new MyType(structObj);
typeobj.MyMethodCalled += new MyType.CallMeDelegate(typeobj_
MyMethodCalled);
typeobj.MyMethodCalled -= new MyType.CallMeDelegate(typeobj_
MyMethodCalled);

So here the object has been created and MyMethodCalled has been subscribed
using a method with same signature as the delegate.

8. To define an enum, we use the enum keyword and create few named states.
public enum MyEnum
 {
 High, Medium, Low
 }

The enumerated data type defines the states of the object. You can see, we have
mentioned three valid states, namely High, Medium, and Low. So upon creating
object of the enum, we can only specify any one of these states. It is also important
to note that the enumeration type is by default integer if we do not specify it explicitly.

How it works...
As you have already gone through the steps of most of the important features of the .NET
language, let us delve deep into the facts which comprise these language features.

To start with, let's talk about interfaces. Interfaces define a contract between two
communicating media. In other words, you can strictly specify some rules that identify a type.
By the way, it is also important to understand that an Interface is only a type that exists inside
an assembly, and not implemented from the base class System.Object. Even though in the
final implementation of the interface actually derived from System.Object, interface does
not implement System.Object inside IL.

.NET Languages and its Construct

16

Structures are another important language feature that exist in the .NET language. Any primitive
type is defined as a structure. For instance, int in C# is actually System.Int32 which is
derived from System.ValueType and is a structure. Structures are primitive value types and
defined as immutable objects. In our case, we have defined a custom structure that has two
members, one is an integer and the other is a string. Structures do not support inheritance.

The most important part of a .NET language is a class. Any logic that you define should remain
inside a class. A class supports all the OOP features, such as inheritance, polymorphism,
abstraction, encapsulation, and so on.

A delegate is a special type defined in .NET Framework which is derived from System.
Delegate, or rather System.MulticastDelegate. When you define a delegate in your
program, it actually produces a type during compilation which can collect multiple methods.
The methods that are passed within a delegate are actually stored inside a collection and
when we invoke a delegate all the methods that we pass inside it will be called sequentially.
C# also supports anonymous delegates.

An event is a wrapper for a delegate. Generally as we know .NET recommends not exposing
variables but rather to use properties to get the value of a member, in a similar way delegates
are actually wrapped around using an event. If we make an event, a caller to the object can
subscribe an event and pass a method that will be stored inside the delegate type. An event is
exposed using an event accessor. Even though C# allows you to specify public events, it wraps
the event inside an event accessor during compilation.

Finally, the enum is an enumerated data type. Enumerated data type allows you to specify
named constants for its values. Generally an enum is treated as an integer, but we can specify
its type explicitly. All are derived from System.Enum and bears special meaning to
the compiler.

While creating the language C#, the team has modified a few types and added special
meaning to them. The one major aspect is System.ValueType which is identified by the
compiler and restricts inheritance, and makes it immutable. Similarly, delegate is also treated
specially. It identifies the System.Delegate type and produces special meaning to the
compiler. Thus after reading the recipe, you must be clear that these language features are
actually specially added to help the programmer to a greater extent. This is why people love
this language so much.

There's more...
Language features are endless. Even though we have identified some of the basic language
features of the language, we still left out some of other important elements that need special
treatment. Let's jot down them one by one.

Appendix

17

What are anonymous types?
Did you know C# 3.0 and above allows you to create anonymous types using Automatic
Property Initializers? Yes, you can declare a type directly while you code to hold abstract
data. Let's see how you can do this:

var x = new { X = 20, Y = new MyObj(), Z = "New String" };

Well using this code, the CLR compiler will automatically generate a new concrete class with
read-only properties X, Y, and Z having its data types int, MyObj, and string respectively.
Hence, in your code you can use this object, and later on if you want to declare an object with
the same type you can do so using the same structure.

C# compiler takes care of this code during compilation and produces concrete anonymous
types in MSIL.

But while you work with those objects, you should remember that these objects have the
following restrictions:

 f You cannot declare a type without initializing it

 f All the properties they produce will be read-only by default

 f You cannot declare methods for these types; C# compiler does not support that

 f They directly inherit from object, you cannot inherit the type from your custom interface

 f You should use implicitly type var while holding the objects, even though you have
the option to hold them in dynamic objects introduced in C# 4.0

What are anonymous methods?
Anonymous methods are special chunks of code that can individually act as a complete
function without a name. In .Net 2.0 Microsoft introduced a way to define an anonymous
method which can be assigned using a delegate, and can be called or invoked directly. Let
us look into an example:

delegate void Del(int x);

// Instantiate the delegate using an anonymous method.
Del d = delegate(int k) { /* ... */ };

So here the function that is assigned to the delegate d does not have its corresponding
name, but yet it can be called and used in the same way as the named function does. One
important thing about anonymous delegate is that you can omit the parameter list from the
method. The compiler is smart enough to actually convert the inline closure block into its
appropriate signatures.

While defining a delegate you can get local variable into its scope, and can also pass this
inline method to another method from where it could be invoked. This is actually the easiest
way of defining inversion control into your code.

.NET Languages and its Construct

18

Anonymous methods are widely used nowadays in the form of Lambda expressions. To define
a closure we are now hugely dependent on Lambda expressions that enhance the way of
delivering our code and callbacks. We will discuss Lambda expressions in more detail later.

Are the ValueType classes always allocated in a stack?
There is a possible myth that says "The ValueType classes are always stored in stack and
reference type are allocated in heaps". Many of us know this statement, but never really
understand what the meaning of it is. We know that the ValueType classes are stored into
a stack, but is it true always? The answer is no. A reference type is an encapsulation of the
ValueType classes which are declared as a member variable of a type, or it is defined on a
type that is declared inside this type. So if you think that every member defined within a Type
is actually stored in stack, you would just see that every memory that you create is actually
created in a stack. The statement misleads us because according to the rule, the ValueType
classes are only stored into a stack when they are defined inside a scope as local variables. A
stack is associated with a thread in such a way that when the thread comes to a method, all
the ValueType classes are created in the stack and when exiting the method, those values
will get cleared.

The reference type on the other hand is always created in heap, but the reference pointer
pointing to the actual object created in the heap is created on the stack. This is some times
called as GC roots.

Let us take an example:

int x = 10;

object y = 10;

string s = string.Format("x :{0}, y : {1}", x, y);

Console.WriteLine(s);
Console.ReadKey(true);

This is basically a very simple code, where I first created one ValueType (int) an object y
which is a reference type and formatted them into a string variable, and loaded the string
into the string variables.

Appendix

19

Now let us see how the IL for the same looks like:

Now here let's take a look at the IL. The line says .entrypoint. EntryPoint identifies
the start of the program. So if you declare your method as Main in .NET, .entrypoint will
automatically be written on it. So it is also a compiler trick which writes .entrypoint correctly.

The second line says .maxstack 3. Here maxstack will indicate that the method allocates
three units of stack for the current method. For our code, it will be:

 f To store the integer value

 f To store reference to the type y while the value is stored in heap

 f To store the reference to the type s while the value is stored in heap

Hence you should remember that even though you create an object or a memory block
that is allocated in heap, the reference pointer is still allocated inside your stack, which
de-references itself once the code execution ends. When all the references to a memory
are de-referenced, it is exposed to the GC for collection.

So the next statement creates three locals for the code block in a stack. Locals indicates the
stack allocation.

.NET Languages and its Construct

20

How to define flags enumeration and description to a value?
enum is an enumerated data type. There is often a need to have a bit field in a program,
and also you want to specify proper names for the enumerated values. For instance, let us
suppose I want an enumeration which defines FileAttribute. A file can be encrypted,
read-only, hidden, or even compressed. To deal with such a situation, we use bit field
operation in such a way that we can define a combination of more than one value. Let us
see how to define a flags enumeration:

[Flags]
public enum FileAttribute
{
 None = 0,
 ReadOnly = 2,
 Hidden = 4,
 Encrypted = 8,
 Compressed = 16
}

Here in the preceding code, the enumeration field is used as flags. We annotate a bit field
enumeration. We need to annotate the enumeration declaration using the flags attribute.
Again while defining the values we need to specify the values of the attribute options as a
power of 2.

Now, let us consider why it is important. As there can be multiple values for individual
enumeration objects, we can specify a combination of them in our project.

var theFileAttribute = FileAttribute.ReadOnly | FileAttribute.
Encrypted;

So in the preceding line the file is both read-only and encrypted. This is a valid statement as
the value evaluated is 10.

There is no specific way to get the description of an enumeration. We need to use reflection
to get the description of an enumeration. Let us take an example :

public enum Standard
{
 [Description("Failed students are returned to their old classes")]
 Fail,
 [Description("Passed students are sent to new class")]
 Pass,
 [Description("Distinctive students will be honored and specially
trained")]
 Distinction
}

Appendix

21

Each simple enumerated field define its own description. Now sometimes from our code we
need the actual description of a value of an enumeration. The enumerations are here marked
with a DescriptionAttribute. So to fetch the appropriate description for a value we need
to first determine the exact description attribute for that value. Let us suppose the value is set
as Standard.Distinction. To get the description we use the following code:

public static string GetEnumDescription(Enum value)
{
 FieldInfo fi = value.GetType().GetField(value.ToString());

 DescriptionAttribute[] attributes =
 (DescriptionAttribute[])fi.GetCustomAttributes(
 typeof(DescriptionAttribute),
 false);
 if (attributes != null &&
 attributes.Length > 0)
 return attributes[0].Description;
 else
 return value.ToString();
}

Here in the preceding code we use the enum data type to get the exact CustomAttribute
that is assigned to the value. The attribute indicates which description is associated with the
current value. So if I call GetEnumDescription((Enum)Standard.Distinction), it will
get me the string associated with the description.

Even though we needed to use this using reflection, I strongly believe this API should exist in
.NET Framework library in near future.

See also
 f http://bit.ly/Language-Features

Advantages of Generics in .NET
Generics is one of the best addition to .NET. It was not present in the first release of .NET, but
after its introduction in .NET 2.0, Microsoft recommends the use all of its generic types rather
than its counterpart non-generic implementations. Generics are template objects that support
the specification of one or more types during object creation, but holding the reusability, type
safety, and efficiency of the code. Generics are mostly common in collections, but one is
free to use the flexibility of Generics on any type. Hence it is important to note that in current
situations, it is recommended to avoid collections like ArrayList, HashTable, rather, it is
recommended to use List<T>, Dictionary<Key, Value> instead. The old collections
hold items as objects, and hence the inherent properties of the type are lost when it is boxed
into the System.Object type.

.NET Languages and its Construct

22

On the contrary, generic collection allows you to pass the type as a specific type during its
construction, which means that all inherent properties of the object remains intact. In other
words, when we add an object, say of type integer, it will be boxed when it gets stored into
an ArrayList, whereas when we use List<int> the whole collection is actually a list of
integers. So there will be no boxing to System.Object or even hold of the explicit type safety
to the collection. That means you cannot add a string to the List<int> collection,
but ArrayList can.

How to do it...
To understand Generics, let us create a Console application and start creating few classes.

1. Start a Console application and create a class. We'll call it NormalClass. This class
does not implement any generic template.
public class NormalClass
 {
 public DateTime FirstMember { get; set; }
 }

You can see that NormalClass has a member which is of the type DateTime. Now
the problem with this class is as C# is type safe, we need to explicitly pass the object
as DateTime.

2. Now let us define an interface which we will use later in the recipe. We'll call
it MyInterface.
public interface MyInterface
 {
 string StringResult { get; set; }
 }

The interface looks simple with one property of type string.

3. Now let us define a class that implements this interface. We are going to implement
this interface with the property so that we can use it later.
public class StringImplementer : MyInterface
{
 public string StringResult { get; set; }
}

4. Finally, let us define an interface for our generic implementation. As Generics
supports the interface types as well, we can define an interface like this:
public interface GenericInterface<T, T1, T2> where T : MyInterface
 where T1:class
 where T2 : struct, new()
 {
 }

Appendix

23

So here the generic interface takes three types T, T1, and T2 which you can pass
through while creating an object. If you see the preceding code, it clearly states
the constraint that the first template object T needs to be a type that explicitly
implements the interface MyInterface. The other types T1 and T2 are of object
type and valuetype respectively. The new constraint defines that the class which
implements this interface should contain a default constructor.

You must also note that a constraint must always be an interface or a non-sealed
class.

5. Now just to implement the interface, we either need to pass the concrete type or pass
an explicit type to be specified by the end user.
public class GenericImplementer<T1, T2> : GenericInterface<StringI
mplementer, T1, T2>
{
 public T1 FirstMember { get; set; }
 public T2 SecondMember { get; set; }
 public StringImplementer GetString()
 {
 StringImplementer implementer = new StringImplementer();
 implementer.StringResult = string.Format("The class passed
are {0} and {1}", this.FirstMember, this.SecondMember);
 return implementer;
 }
}

Here in the preceding type declaration, we specify the first type as a concrete type
called StringImplementer, and the other types T1 and T2 will be externally sent
when the object is created.

6. Finally from the program.cs file of the Console application, let us create an object
of the type using the following code:
NormalClass nobj = new NormalClass();

GenericImplementer<NormalClass, int> gobj = new
GenericImplementer<NormalClass, int>();
gobj.FirstMember = nobj;
gobj.SecondMember = 30;
var stringresult = gobj.GetString();
Console.WriteLine(stringresult.StringResult);
Console.ReadKey(false);

Here in the example code, we first create an object of type NormalClass. You can
see that the type is strict and has only a member of DateTime. It is not flexible
enough to take parameters and mould the type to any type other than DateTime.

.NET Languages and its Construct

24

On the contrary, GenericImplementer can specify what type it wants to specify.
Just as you can see in the preceding code we specified FirstMember to be of type
NormalClass and SecondMember of type int.

How it works...
Generics is a special feature that has been supported by CLR and also by the languages
that are implemented on top of it. When you compile C#, the assembly contains parameter
placeholders for a specific type. Additionally, the metadata of the generic constraint is also
embedded inside the type.

While implementing the types when we pass the type as parameters, it creates a placeholder
for the parameter inside the type. These types can specify constraints which are explicitly
checked by the compiler itself when the object is being created. The constraint can be either
an interface, or a non-static type, or even specified as a class or struct. When we specify a
class, it means any type can be passed to the placeholder and when it is struct, it can only
take a structure.

Generics parameters can be applied to a class as I have showed you in this recipe; in fact
you can pass generic parameters directly inside a method too. For instance, consider the
following example:

public key CallGenericMethod<key, value>(key k, value v) where value :
class
 {
 if(v!= null)
 return k;

 return default(key);
 }

Here in the example while calling the method we need to pass two parameters, where the
second one is specified as an object type (we cannot pass a value type as second parameter).
Here in the preceding code we first check whether the value that is passed as the second
parameter is null or not. If it is null, we return the default value of the type passed.

The default value for a reference type is always null, but for a value type it differs and will be
the initial value of it. For instance the default value of an int is zero.

There's more...
Even though we have already demonstrated Generics in this recipe, there are a few interesting
things that are left behind. Let us discuss them.

Appendix

25

What do you mean by covariance and contravariance?
If you literally think of variance, you would say variance is a concept in which if one data varies
at a certain time, the other one will vary automatically. And rightly so. In case of .NET, variance
comes just in such a way. Let's talk about the need of variance or covariance in .NET.

Before we do, have you ever done something as follows?

IA a = new A ();
List<IA> aa = new List<A>(enumerables);

The two lists will not compile before .NET 4.0. It will throw InvalidCastException as it
doesn't know if List is actually a list for each enumerable.

Why is this so?

Say I write the following:

aa.Add(new B()); //Considering B implements IA

This will create problems, as aa cannot be cast to List anymore. To address such situations
.NET 4.0 introduces covariance and contravariance.

Let's take another example to clear this:

 public interface IPeople
 {
 string GetName();
 }

 public class RuralPeople : IPeople
 {

 #region IPeople Members

 public string GetName()
 {
 return "RuralPeople";
 }

 #endregion
 }

 public class UrbanPeople : IPeople
 {

 #region IPeople Members

 public string GetName()
 {

.NET Languages and its Construct

26

 return "UrbanPeople";
 }

 #endregion
 }

Here the two classes RuralPeople and UrbanPeople are implemented from IPeople.
Now, let's define a writer which writes the collection of names of these classes:

interface IWriter<T>
 {
 void WriteNames(IEnumerable<T> ts);
 }

 public class Writer<T> : IWriter<T> where T : IPeople
 {
 public void WriteNames(IEnumerable<T> ts)
 {
 foreach (var t in ts)
 {
 Console.WriteLine(t.GetName());
 }
 }
 }

Now if I write:

List<RuralPeople> ruralist = new List<RuralPeople> { new RuralPeople()
};
IWriter<IPeople> writer = new Writer<IPeople>();
writer.WriteNames(ruralist);

This will produce a compiler error in .NET 3.0. This is because of the fact that IPeople
cannot write names from List. In .NET 4.0, we solve this issue by writing the out parameter
in IEnumerable.

public interface IEnumerable<out T> : IEnumerable
{
}

The out keyword in T makes T covariant, which means you can pass any value to T that
is derived from T. In our case, IPeople. Hence, we can now pass IEnumerable of
RuralPeople and IEnumerable of UrbanPeople easily to IPeople, and it will hold its
variance completely.

Appendix

27

The generic out parameter restricts the class to only return Ts to the outside environment.
Hence T can occur only as an output parameter. Hence you cannot pass T to the class from
outside. Thus, this ensures that List is actually either List or List, and your add method does
not allow to pass IPeople anymore.

Now if we want to use variance, but still need to create an instance of T inside the class,
contravariance deals with such situations. You can annotate the generic parameter with
in keyword, and it will ensure that T can be used only in input positions.

 interface IWriter<in T>
 {
 void WriteNames(IEnumerable<T> ts);
 }

This will make the following lines legal:

List<RuralPeople> rurals = new List<RuralPeople> { new RuralPeople()
};
List<UrbanPeople> urbans = new List<UrbanPeople> { new UrbanPeople()
};
IWriter<IPeople> peoples = new Writer<IPeople>();
IWriter<RuralPeople> ruralwriter = peoples;
IWriter<UrbanPeople> urbanwriter = peoples;
ruralwriter.WriteNames(rurals);
urbanwriter.WriteNames(urbans);

Hence you can say that RuralPeople and UrbanPeople is contravariant to IPeople.
Consequently, you can assign instance of Writer of IPeople to IWriter of RuralPeople
or UrbanPeople easily and it will process both WriteNames appropriately.

This is not the end of it. Generic variance is also spread over delegates. In a similar way, you
can use Generic covariance and contravariance for delegates too.

See also
 f http://bit.ly/Generics-Basics

Using iterator blocks in .NET
Iterators are one of the most interesting additions to the .NET features in .NET 2.0. When
the word iterator comes into our minds, we often think of IEnumerable. But do we actually
know what exactly an IEnumerable is? Every collection that exists in the .NET environment
automatically implements an IEnumerable interface, which needs an IEnumerator
internally to iterate between a sequence.

.NET Languages and its Construct

28

So .NET iterator is actually based on two most important interfaces, IEnumerable<T> and
IEnumerator. We use generic one as we already know the benefits of generics in .NET.

Getting ready
C# comes with two basic interfaces, namely IEnumerable, and IEnumerator that
represents the base for any collection. IEnumerable is an interface that defines a
GetEnumerator which gets an IEnumerator. An IEnumerator on the other hand provides
a simple iteration over a collection. Using the interface ensures that you could use this
collection in foreach loop of C# or for each in VB.NET. If you look back to MSDN, it says:

"IEnumerator is the base interface for all enumerators. Enumerators only allow
reading the data in the collection. Enumerators cannot be used to modify the
underlying collection.

Initially, the enumerator is positioned before the first element in the collection.
Reset also brings the enumerator back to this position. At this position, calling
Current throws an exception. Therefore, you must call MoveNext to advance the
enumerator to the first element of the collection before reading the value
of Current."

Almost all the collections in .NET class library are derived from IEnumerable, and hence you
can iterate through the collection it internally holds and use it.

IEnumerable defines a member called GetEnumerator. The GetEnumerator returns
an IEnumerator which allows you to traverse a sequence. The IEnumerable and
IEnumerator patterns are followed by all IList, ICollection, and so on. So these
patterns are very important to understand. Let me define IEnumerable and IEnumerator.

public Interface IEnumerable<out T>
{
 IEnumerator<T> GetEnumerator();
}
public interface IEnumerator<T> : IDisposable
{
 T Current { get; }
 bool MoveNext();
 void Reset();
 }

So, IEnumerable actually creates an object of IEnumerator which allows you to iterate
on a sequence. Every time you call an object from IEnumerable, IEnumerator actually
calls MoveNext to hold the current object in the Current property. This object is then
returned from IEnumerable. The generic implementation of IEnumerator has the property
Current as template object.

Appendix

29

The basic look of the calls to an IEnumerable looks like the following:

IEnumerator<int> iterator = yourcollection.GetEnumerator();
while (iterator.MoveNext())
{
 int data = iterator.Current;
 // Your custom logic around data is here.
}
Iterator.Dispose();

Now iterators in C# even though uses these interfaces are not actually the same if you
implement an IEnumerator yourself and return it from an implementation of IEnumerable.
The iterator block that is self-generated by the compiler actually holds a state-machine
inside it.

There is also a special interface called IQueryable which is used for query providers. The .NET
Framework associates any expression tree data execution to a specific query provider which is
only supported by IQueryable interface that is actually inherited from IEnumerable.

How to do it...
In this recipe, we will see what exactly the .NET iterator block is and how to write an iterator.

1. Open the Console application and create a new class.

2. In the class, write the following code:
public IEnumerable<int> MyIteratorBlock(int number)
 {
 int i = 0;
 while (i < number)
 yield return i++;
 }

3. In the preceding code we have just send a number to the method and the method
will loop through and return each number. Now if you look carefully, you see rather
than returning the actual value of i we did it using the yield keyword. Also, even
though each time the method executes it returns an integer value we still use
IEnumerable<int> as its return type. This is confusing right?

C# 2.0 introduced a keyword yield that allows you to create the IEnumerable
objects automatically. So when we use yield return i, the value from the i is
returned, and also the method is paused with all active states held.

4. We can either use yield return or yield break to our code that will generate
IEnumerable automatically. Let us write the code in step 2 a little differently.
public IEnumerable<int> MyIteratorBlock(int number, int

.NET Languages and its Construct

30

breaknumber)
 {
 int i = 0;
 while (i < number)
 {
 if (i == breaknumber)
 yield break;
 yield return i++;
 }

The preceding code is slightly different from the other. It sends one extra parameter
such that when breaknumber is encountered between the sequence it invokes a
yield break. The yield break ends the IEnumerable.

5. Now if I run both the code using the (10, 7) parameter set, the enumerable will
generate 0 to 6, and when I pass (10,12) it generates 0 to 9, as 12 is outside the
normal execution path.

How it works...
The preceding code actually executes sequentially and generates the collection from the
machine. Now let us step into the code and see how it works exactly. If you write few lines of
code, you could see that when you call the method from your code the lines inside the method
did not run, rather the lines will run when actually you want to get object from the iterator
block.

In fact, the C# iterator internally holds a state machine for each iterator. The state machine
is actually a CompilerGenerated class which is capable of storing the local variable as
properties of the class, the execution point as delegate, and so on. Thus the state machine
allows you to pause and resume execution of the block as and when required.

This is a very cool concept. Let me demonstrate the fact with an example:

public IEnumerable<int> GetFirst10Nos()
{
 for (int i = 0; i < 10; i++)
 yield return i;
}

This is the most simple method which returns the first 10 numbers starting from zero. Now
let's see how it looks like after compilation:

public IEnumerable<int> GetFirst10Nos()
{
 <GetFirst10Nos>d__0 d__ = new <GetFirst10Nos>d__0(-2);
 d__.<>4__this = this;

Appendix

31

 return d__;
}

// Nested Types
[CompilerGenerated]
private sealed class <GetFirst10Nos>d__0 :
 IEnumerable<int>, IEnumerable, IEnumerator<int>, IEnumerator,
IDisposable
{
 // Fields
 private bool $__disposing;
 private bool $__doFinallyBodies;
 private int <>1__state;
 private int <>2__current;
 public Iteratordemo <>4__this;
 private int <>l__initialThreadId;
 public int <i>5__1;

 // Methods
 [DebuggerHidden]
 public <GetFirst10Nos>d__0(int <>1__state)
 {
 this.<>1__state = <>1__state;
 this.<>l__initialThreadId = Thread.CurrentThread.
ManagedThreadId;
 }

 private bool MoveNext()
 {
 bool CS$1$0000;
 try
 {
 this.$__doFinallyBodies = true;
 if (this.<>1__state == 1)
 {
 goto Label_0068;
 }
 if (this.<>1__state == -1)
 {
 return false;
 }
 if (this.$__disposing)
 {
 return false;

.NET Languages and its Construct

32

 }
 this.<i>5__1 = 0;
 while (this.<i>5__1 < 10)
 {
 this.<>2__current = this.<i>5__1;
 this.<>1__state = 1;
 this.$__doFinallyBodies = false;
 return true;
 Label_0068:
 if (this.$__disposing)
 {
 return false;
 }
 this.<>1__state = 0;
 this.<i>5__1++;
 }
 this.<>1__state = -1;
 CS$1$0000 = false;
 }
 catch (Exception)
 {
 this.<>1__state = -1;
 throw;
 }
 return CS$1$0000;
 }

 [DebuggerHidden]
 IEnumerator<int> IEnumerable<int>.GetEnumerator()
 {
 if ((Thread.CurrentThread.ManagedThreadId ==
 this.<>l__initialThreadId) && (this.<>1__state == -2))
 {
 this.<>1__state = 0;
 return this;
 }
 Iteratordemo.<GetFirst10Nos>d__0 d__ = new Iteratordemo.<GetFi
rst10Nos>d__0(0);
 d__.<>4__this = this.<>4__this;
 return d__;
 }

 [DebuggerHidden]
 void IDisposable.Dispose()

Appendix

33

 {
 this.$__disposing = true;
 this.MoveNext();
 this.<>1__state = -1;
 }

 // Properties
 int IEnumerator<int>.Current
 {
 [DebuggerHidden]
 get
 {
 return this.<>2__current;
 }
 }
}

Well, basically the compiler generates a type for holding the state machine for you. The type
is generated in such a way that it implements the IEnumerator, so that it can produce the
iterators and hold the state of the method within itself. Let me explain few methods for you:

 f Our method actually creates a nested class d__0 which holds the state machine,
and also implements IEnumerable and IEnumerator. Once our method is called,
it creates a new object of it and returns back the object. As the class implements
IEnumerable, it doesn't produce any problems. I should remind you, no code from
our method has been executed yet.

 f Initially, when we use IEnumerable in the foreach loop, it internally calls
GetEnumerator. If you look closely, this method checks if the call is made from
the current thread or not, and also checks for the state to be -2. You can see, while
creating the object, it passes the state as -2. Hence to conclude, GetEnumerator
always creates a new object of enumerator if the call is made either for the first time,
or through a different thread than the one which owns it. You should note that while
creating the object from GetEnumerator, the object is initialized to 0, which states
that the enumerator is initialized.

 f MoveNext, being the important part of the object, actually checks the value of the
state to indicate the various stages of the object.

 f 0 represents before calling MoveNext.

 f -1 at the end of the enumerator, returns false.

 f -2 represents no enumerator is fetched (before calling GetEnumerator).

 f 1 represents the enumeration in running, sets the value of this.<>2__current
and returns true.

.NET Languages and its Construct

34

 f Now as for each request to MoveNext, the state is checked and the initial GoTo
statement moves the control to Label_0068: , the object keeps on running our
code and starts producing numbers.

 f Finally, when the while loop fails to satisfy the condition, the state is set to -1 and
the execution terminates.

So, the state machine object is capable of producing numbers and also to pause and resume
the method.

What does the member variable of state machine represent?
Locals, parameters, and so on are created as member variables in such a way that local
variable i is represented as <i>5__1. Two Boolean variables hold the state of disposing and
finally execution, that is $__disposing and $__doFinallyBodies. The current value of
the object is represented in <>2__current, the state in which the object is also represented
(even though the state is not given any enumerated names) in <>1__state. It also stores
object which invokes the iterator, <>4__this.

You should note that the variables, methods, and types are generated in such a way that they
don't represent a valid C# type, and thus eliminates the occurrence of another type of the
same name in the assembly.

There's more...
Iterators open a wide door for us. We can make use of them to implement lot of
functionalities. Let us quickly look at a few more things.

Iterators as sequence generators with rules
Iterators acts as a state machine. Hence, it is important to note that we can create a
sequence of steps as an enumerable. IEnumerable of objects is actually not a collection
of values, rather it can be a sequence generator. Let us look into the code:

public static IEnumerable<int> FibonacciGenerator(Func<int, bool>
abortCondition)
{
 int a = 0, b = 1;
 int c = 0;
 while (abortCondition(c))
 {
 c = a + b;
 yield return c;
 a = b;
 b = c;
 }

Appendix

35

This is actually a Fibonacci series generator. We pass a delegate as an argument which
determines the exit point of the sequence. If we pass e => true as the Lambda expression
to this delegate, we will have an infinite series of Fibonacci:

 var fen = FibonacciGenerator(e => e <= 100);
 foreach(int i in fen)
 Console.WriteLine(i);

The code will print the Fibonacci series until it reaches 100. The state machine maintains its
value for each object called from it.

Iterator and finally block
One thing you must remember is that you cannot wrap a yield statement inside a try block
which has a catch in it. C# compiler limits you to write a catch block because of a yield
statement. But you can try this with the finally block.

Yes, C# compiler generally ensures that the finally block will execute at least before going
out of the scope of the method. As I showed before, the state machine completely rewrites the
block of an iterator into multiple methods. Let's try with finally and see what exactly we get
inside it.

try
{
 int a = 0, b = 1;
 int c = 0;
 while (abortCondition(c))
 {
 c = a + b;
 yield return c;
 a = b;
 b = c;
 }
}
finally
{
 Console.WriteLine("We made it to the finally!");
}

Now if we run this code, we will see that the finally block will be called only when yield
finishes. This is a smart approach by the compiler. It creates a method, names it finally, and
calls it when the enumeration is exited.

private void <>m__Finally6()
 {
 this.<>1__state = -1;

.NET Languages and its Construct

36

 Console.WriteLine("We made it to the finally!");
 }

The method will be called from the code only when the state represents the exit of the
enumeration.

What are collections in .NET and how do they work?
A collection is a group of related objects that are stored in a single plural object. A collection
in .NET starts from an array, which is derived from System.Array to more usable types,
such as ArrayList, List<T>, and so on. Unlike arrays, the collection objects have the
capability to grow or shrink based on the requirement such that an object can be added or
removed from a collection whenever needed.

Even though collections are derived from IEnumerable, there are other interfaces too that
have been used by the collection types, such as IList, ICollection, and so on.

The different types of collections are as follows:

 f System.Collections: These are lists that do not store elements as specifically
typed objects. They are general collections that store elements into objects. For
instance, ArrayList, Hashtable, Queue, Stack, and so on. Depending on
whether the type of the object is ValueType, these collections are prone to box/
unbox elements while adding or removing objects.

 f System.Collections.Generic: Generic collections are special collections
that stores the type of information in addition to the elements. The generic
collection is useful when every object in the collection is of the same data type.
For example: Dictionary<TKey,TValue>, List<T>, Queue<T>, Stack<T>,
SortedList<TKey,TValue>, and so on.

 f System.Collections.Concurrent: Concurrent collections are thread safe
version of lists. The objects can be added or removed without compromising the
thread safety in such a way that multiple threads can access them concurrently. For
example, BlockingCollection<T>, ConcurrentDictionary<TKey,TValue>,
ConcurrentQueue<T>, ConcurrentStack<T>, and so on.

 f ReadonlyCollection: A read-only collection exposes read-only implementation of
a collection, which means that when a collection is exposed as read-only, it will not
allow the user to modify it. IReadonlyCollection<T> is another implementation
of IEnumerable, but adds the Count property so that ReadonlyCollection is
deterministic. A read-only collection is immutable or frozen and cannot be changed
once created. They do not allow addition or removal of elements from it.

The collection classes form an important part of .NET Framework. We generally don't rely
much on arrays in .NET languages, and large implementation of collection types really help
in building day-to-day applications.

Appendix

37

Projections of a collection
In addition to the actual array storage classes, there is a special class called ArraySegment
that projects on a specific portion of an array. To use it, we pass an array to it and offset of the
array index, and the object projects the specific section of the array that has been projected.

int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
ArraySegment<int> segmentRange3to8 = new ArraySegment<int>(array, 3,
6);
foreach (int i in segmentRange3to8)
 Console.Write(i);

The ArraySegment class takes an offset and the count of the elements that it needs to
process, and creates a new segment of an array. In case of ArraySegment, the actual
objects are not copied and no extra memory is used. The preceding code prints from 3 to 8.

Working with LINQ and Lambda expressions
LINQ is a Microsoft implementation for integrating search queries in .NET languages. We
know that it is really easy to find data from SQL objects simply by writing a query, while it's
somewhat hectic when we want to do the same thing in a DataTable or Lists. Generally, we
will have to loop through every element to find the exact match. If there is some aggregation
we need to aggregate the values. LINQ provides an easy way to write queries that can run
with the in memory objects.

Lambda expression is nothing but a syntax of writing an anonymous method directly in the
code. With the introduction of Lambda expressions, developers can easily write methods on
the fly. .NET introduces generic delegates and also uses them in their base class library to
show the world where exactly the Lambda expressions are suited. The BCL-defined general
purpose delegates, such as Action and Func are widely used. You can pass your inline
logic in these extension methods to get a new enumerable or some result based on what it is
exactly for. For instance, say you have a collection of objects of the User type and you want
to find the users whose name starts with A. You can directly write:

var usersWithA = this.AllUsers.Where(e=> e.Name.StartsWith("A"));

Now in the preceding statement the Lambda will be called for every instance of User inside
the AllUsers collection and evaluate whether the name starts with A. If this Lambda returns
true, the object will be selected otherwise will be rejected.

LINQ and Lambda expressions are very important in the context of current trend of
development. In this recipe, we are going to spend some good time understanding the
syntax and insights on how we can use these little gems in a better way in our code.

.NET Languages and its Construct

38

Getting ready
Before we get started, we need to have a clear idea on what anonymous methods are and
how to use them. Let us take a look at how to write anonymous methods in C# 2.0.

int i = this.compute(10);
private int compute(int value)
{
 return (value + 2);
}

It is a very normal example of a function call. The compute function is called when the line
i=this.compute(10) is called. We can replace the preceding code with inline anonymous
function like the following:

delegate int DelType(int i);
DelType dd = delegate(int value)
 {
 return (value +2);
 };
int i = dd(10);

In the second case we can see that by declaring a delegate and giving an instance of that
delegate type, we can easily manage writing anonymous methods. .NET 3.5 made this
concept a little more compact. We can take the use of => operator which was introduced in
.NET 3.5. It gives more flexible and easier ways to write expressions. Lambda expressions can
be used in the previous case to get the result as follows:

delegate int DelType(int i);
DelType d = value => value + 2;
int i = d(10);

Thus the delegate type is assigned directly. The meaning of the line value =>value + 2 is
just similar to declaring a function. The first value indicates the arguments that we pass in a
function and the one after the => operator is the body of the function. Similarly, if we want we
can feed in as many arguments as we want to, as in the following example:

// Method with 2 arguments
delegate int DelType(int i, int j);
DelType d = (value1,value2) => value1 + value2;
int i = d(10,20) // Returns 30

In this example, we passed in two arguments to the function and returned the result. You may
also wonder how I can write a Lambda expression when my function body takes more than
one expression. Don't worry, it's simple. Take a look at the following example:

// Multiline Function Body
delegate int DelType(int i, int j);

Appendix

39

DelType d = (value1,value2) => {
 value1 = value1 + 2;
 value2 = value2 + 2;
 return value1 + value2;
};

Thus we see that writing a Lambda expression is very easy. This comes very handy when
working with LINQ, as most of the extension methods that are associated with LINQ takes
function delegates as arguments. We can pass simple delegate function body easily to those
functions to perform work easily.

Now let us move to LINQ and see how similar it is to write LINQ queries just like the Lambda
expressions. To work with this recipe, I am going to create two lists to demonstrate the
LINQ operations.

 List<Employee> employees = new List<Employee>();
 List<Employee> employee1 = new List<Employee>();
 List<Order> orders = new List<Order>();
 //Where Employee and Order are classes.
 public class Employee
 {
 public string name;
 public int age;
 public override string ToString()
 {
 return this.name;
 }
 }
 public class Order
 {
 public string itemName;
 public string empName;
 public override string ToString()
 {
 return this.itemName;
 }
 }

Here I have created two classes, one deals with the employees and another deals with orders.
Now let us query into these classes and try to understand LINQ better. While writing queries,
you will find a number of operators that we can use. The most general operators are:

 f Projection operators (Select)

 f Restriction operators (Where)

 f Partitioning operators (Take/Skip, TakeWhile/SkipWhile)

.NET Languages and its Construct

40

 f Join operators (Join)

 f Concatenation operator (Concat)

 f Ordering operators (order by)

 f Grouping operators (group by into)

Now let us apply these operators one by one.

How to do it...
1. With the word projection, we mean the Select statements. Every LINQ query

supports projection. To do this we use the following code:
var iNames = from i in employees
 select i.name;

//Using Lambda Expression
var iNames = employees.Select<Employee, string>(r => r.name);

Here IEnumerable of string is returned. In the preceding example, we are also
taking advantage of anonymous type declaration that was introduced in .NET 3.5.

2. As every query supports the projection operations, LINQ does as well. You can use the
Where extension method or the where clause in the collection to fetch the filtered
collection, as shown in the following example:
var filterEnumerable = from emp in employees
 where emp.age > 50
 select emp;

 //Using Lambda Expression
var filterEnumerable = employees.Where<Employee>(emp => emp.age >
50);

So in the preceding code, it selects all the employees who are above 50 years of age.

3. Partitioning is also supported with LINQ. You can partition the data by using the Take
or Skip extension methods. For instance:
var filterEnumerable = (from emp in employees
 select emp).Take<Employee>(2);

 //Using Lambda Expression
var filterEnumerable = employees.Skip<Employee>(2);

Appendix

41

Here the filterEnumerable will take the first two elements from the LINQ
statement, while the second one takes all the elements by skipping the first two
elements. You can use both Skip and Take together to select any portion of the
enumerable. For instance:
var filterEnumerable = employees.Skip<Employee>(2).
Take<Employee>(5);

The preceding code will skip the first two elements, but selects the next five elements
in the list. The Take and Skip extension methods on IEnumerable is very useful.

4. The TakeWhile and SkipWhile methods helps in partitioning data based on some
Lambda expression passed to them. For instance:
var filterEnumerable = (from emp in employees
 select emp).SkipWhile<Employee>(
 r => r.name.Length > 4);

 //Using Lambda Expression
var filterEnumerable = employees.Select<Employee, Employee>(
r => {
 return r;
 }).TakeWhile<Employee>(r => r.name.Length > 4);

The TakeWhile method is just the opposite to the SkipWhile method. The
Skipwhile method skips the elements while evaluating the logic, while the
TakeWhile method does the reverse.

5. Joining between two statements is another important aspect of LINQ. There is a
special join key that allows to join two elements completely with support for inner,
right, left, and outer joins. Let us look at the basic syntax of joining two
collections.
var innerjoinedelements = from emp in employees
 join ord in orders
 on emp.name
 equals ord.empName
 select emp;

 //Using Lambda Expression
var innerjoinedelements = employees.Join<Employee, Order, string,
Employee>
 (orders, e1 => e1.name, o => o.empName, (o,
e2) => o);

.NET Languages and its Construct

42

The preceding syntax joins the Employee with orders in such a way that both have
the employee names. As we select only the common elements, this looks like one
innerjoin statement.
var leftjoinedelement = from e in employees
join ord in orders on e.name equals ord.empName
into joinedorders from orders in joinedorders.DefaultIfEmpty()
select e;

The preceding statement represents the leftjoin statement. We need to use
DefaultIfEmpty on the joined object to select the all the other unmatching
elements from the other collection. Similarly, you can reverse the join statement to
get the rightjoin query. You can make use of DefaultIfEmpty statement in
your joins to generate outer joins too.

6. As we have all the features of query in LINQ, let's take a look how to write the
OrderBy and ThenBy clauses.
var orderItems = from emp in employees
 orderby emp.name, emp.age descending;

 //Using Lambda Expression
var orderItems =employees.OrderBy(i => i.name).ThenByDescending(i
=> i.age);

Here the statement orders by employee name and then by age in descending order.

7. Groupby is another important criteria on LINQ. LINQ allows you to group objects to
get aggregate of a collection. While using GroupBy we actually get an intermediate
element which implements IGrouping<tsource,telement>. Let us look at the
following code:
var itemNamesByCategory = from i in _itemList
 group i by i.Category into g
 select new { Category = g.Key, Items = g };

This gets all the categories and items grouped by category. Well this grouping
seems to be a little tricky for me. Let me help you understand what exactly is
happening. Here while we are grouping, we are taking the group into g (which is
a IGrouping<tsource,telement>). The g will have a key, which holds the
grouped data; you can add multiple grouping statement. If you want to have a
having clause, it will perform the same functions that the where clause does,
as in the following example:
var filterEnumerable2 = from emp in employees
 where emp.age >65 //Normal Where clause works on all items
 group emp by emp.age into gr where gr.Key > 40
 select new {
 aaa = gr.Key,

Appendix

43

 ccc=gr.Count<employee>(),
 ddd=gr.Sum<employee>(r=>r.age),
 bbb = gr
 };

Here in the example, I have returned the aggregate functions, such as sum, count,
and so on which you can find from group data.

8. There are other operators like Union, Intersect, Except, and Distinct
operators too. For instance:
var un = (from i in _itemList
 select i.ItemName).Distinct()
 .Union((from o in _orderList
 select o.OrderName).Distinct());

It gets distinct items from both the collections, but takes the union of both in the final
resultant enumerable. You can use the Intersect operator in a similar way just like
union to get the intersection of both the collection.
var except = (from i in _itemList
 select i.ItemID).Distinct()
 .Except((from o in _orderList
 select o.OrderID).Distinct())

The preceding Except method takes the first collection and removes all the
elements that appear in the second collection.

9. Another important consideration that you need to remember is the use of let. While
between the query you can always create an intermediate storage to store some
values during iteration process. We use the let keyword to define values inside the
query. For instance:
var filterEnumerable = from emp in employees
 let x = emp.age
 let y = x * 5
 select x;

In the preceding query, we have actually declared an intermediate variable to store a
value. The compiler is smart enough to create an appropriate storage for you as let
is self-evaluated during compilation just like var.

10. LINQ opens the whole gamut of traversal over programmable objects. With the
introduction with LINQ few other subsidiary features were also introduced, which
includes DLINQ, XLINQ, LINQ to Entities, LINQ to NHibernate, and LINQ to anything.

.NET Languages and its Construct

44

How it works...
LINQ combines the anonymous methods and extension methods to create query among a
type. Practically speaking, if you dive deep into LINQ and Lambda expressions, they are just
syntactic sugar to the existing iterators. LINQ is a new way of writing a method that forms an
iterator block.

When we say define a LINQ query, the C# compiler generates a number of types based on
which it can store intermediate objects. For instance, even though to the end user we can
use an anonymous type or an intermediate type using let/join or group keywords, they
are actually under the hood concrete types that exist in the assembly. You should always
remember that there is no concept of anonymous delegate or types in CLR, and hence
whenever you define a LINQ statement that employs anonymous types, it creates a concrete
type and embeds an object in the block that it is compiled to.

It is a combination of delegates and/or types that comprises the whole LINQ statement. If you
look into some details of say a Groupby statement you will see something as follows:

var simpleGroup = from i in Program.myList
 group i by i.Count() into g
 select new { Count = g.Count(), Elements = g
};

Here we create an IEnumerable (as most of the LINQ statement returns an IEnumerable)
of anonymous types with g being an intermediate object for which we generate Count and
store the grouped data into the objects. If you see the same code in the reflector it would look
as shown in the following screenshot:

Appendix

45

So you can see here in the code that the C# compiler wraps around Enumerable.
GroupBy inside the Enumerable.Select, where the former returns an IEnumerable
of IGrouping members. On the other hand if you see it internally, the enumerable is first
traversed to yield IGrouping objects. These objects are then iterated again using the iterator
block to generate the actual anonymous objects. The IGrouping objects are capable to
aggregate implementations. It is an interface which is actually implemented by the compiler
automatically during compilation.

It is a similar technique just as how join, orderby, distinct, and so on, work internally.

There's more...
LINQ being a very vast topic, there is always an element to speak more about it. Let us look
into some other aspects of LINQ that bear special attention.

How to work with LINQ to XML?
Parsing an XML and retrieving information about an XML is quite a big task with the XML DOM
objects that existed before. Finding similar types within XML needed it to parse all the nodes
and get the required one. But now with the introduction of LINQ, it should support querying of
the XML elements and generate an XML document on the fly through code. LINQ to XML is a
support of LINQ to the XML document. Before we go further, we need to consider a few types
that form the XML body.

 f XDocument: This determines the whole XML document

 f XElement: This maps to an individual XML element

 f XDeclaration: This forms the declaration of an XML

 f XAttribute: This represents an attribute on an XML element

 f XComment: This represents a commented out text on an XML

 f XName: This represents any XML name that has been predefined

Now let us consider the following code:

XDocument bookStoreXml =
 new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Bookstore XML Example"),
 new XElement("bookstore", new XElement("genre",
 new XAttribute("name", "Fiction"),
 new XElement("book", new XAttribute("ISBN",
 "10-861003-324"), new XAttribute("Title", "A Tale of Two
Cities"),
 new XAttribute("Price", "19.99"),

.NET Languages and its Construct

46

 new XElement("chapter", "Abstract...", new XAttribute("num",
"1"),
 new XAttribute("name", "Introduction")),
 new XElement("chapter", "Abstract...", new XAttribute("num",
"2"),
 new XAttribute("name", "Body")
))))
);

Here in the preceding code, you can see that we have built an entire XDocument object that
represents the XML internally. Each object as stated in the preceding code represents its own
properties. You can use the bookStoreXml.Save method to actually save the created XML
to hard disk or other media.

Similarly, you can also use XElement.Parse or XDocument.Parse to parse an XML from
a string, or XDocument.Load or XElement.Load to load from a disk file. Now what could
you use to search in XML? Let us suppose that in the preceding code, we need to find all the
books which have the genre Fiction. We write:

var element = from e in bookStoreXml.Descendants("genre")
 let attr = e.Attribute("name")
 where attr.Value.Equals("Fiction")
 select e;

So here you can see the books will be selected for which the genre is Fiction and
this Fiction is taken from an attribute of an element (name of the element). The
descendantNodes will find all the nodes that have the element name that we passed.

You can try out more like this to understand this further.

What are expression trees and how can we decompose a Lambda
expression into an expression tree?
An expression tree is nothing but the representation of a Lambda expression in terms of .NET
objects. Expression is the main class that holds any expression in it and it lets us divide the
whole body of Expression into smaller individual units. For instance:

Func<int, bool> mydelegate = x => x < 5;
Expression<Func<int, bool>> myexpressiondelegate = x => x < 5;

In the preceding code, the delegate Func can take the expression x=>x<5 which represents
an anonymous method that takes an integer argument and returns if the value is less
than five.

Appendix

47

Now to decompose the method into an expression tree, let's wrap the Func into an
Expression body. Expression has overloaded the assignment operator to decompose
the body of the function.

Now if you see the body of Expression, you can see that there are three parts in the whole
expression:

MethodCallExpression

Query Invoker Expression

BinaryExpressionParameterExpressionLambdaExpresion

ContantExpressionUnaryExpression

 f ParameterExpression: This is an external parameter to the expression. Here it is x.

 f BinaryExpression: As the inner expression x<5 is binary, it produces a
BinaryExpression. Each BinaryExpression has two Expressions body within
it and two properties Left and Right. In our case, the Expression has one
ParameterExpression and another ConstantExpression.

 f Left: This produces the left-hand side of the BinaryExpression. In our case the
left-hand side represents the ParameterExpression the same object which is
passed as x.

 f Right: Right represents the other side of the expression which in our case is a
constant term. So Right represents a ConstantExpression for us.

 f NodeType: The NodeType gives you an idea of what the BinaryExpression does. There
are a lot of binary types available. In our case it is LessThan.

.NET Languages and its Construct

48

Hence the entire decomposition will look as follows:

ParameterExpression externalParam = myexpressiondelegate.
Parameters[0];
BinaryExpression bbody = myexpressiondelegate.Body as
BinaryExpression;
ParameterExpression parambodyleft = bbody.Left as ParameterExpression;
ConstantExpression constRight = bbody.Right as ConstantExpression;
ExpressionType type = bbody.NodeType;

Each Expression has a ReadonlyCollection of parameters that are passed within the
body of the Expression. In our case the Expression has one parameter. As you can see
I have used Parameters[0] to get the parameter that is passed to the Expression. The
external parameter represents x here and its Type is Int32.

The Expression has a body element which shows you the method body of the expression.
In our case the body will hold only the part x<5. As it is a BinaryExpression, I can easily
translate it into a reference of BinaryExpression. So in our case the body represents
the BinaryExpression.

Finally we parsed the BinaryExpression to get the parameter x in the Left and
ConstantExpression five in the Right property.

Now if you want to recreate the whole expression from these objects, you can do so using :

BlockExpression body = Expression.Block(
Expression.LessThan(parambodyleft, constRight));

Expression<Func<int, bool>> returnexpression = Expression.
Lambda<Func<int, bool>>(body, param1);
Func<int, bool> returnFunc = returnexpression.Compile();

bool returnvalue = returnFunc(30);

BlockExpression represents the actual body of the Expression. Based on the complexity
of the code you need to define the Expression block.

Finally the call to Compile() generates the IL code dynamically at runtime and basically
gives you the example of compiler as service.

Appendix

49

Now if you run the code, you will find the returnvalue holds false for 30 and true for 3.

UnaryExpression

LambdaExpression

BinaryExpression

Binary : AndAlso Binary : Equal

ConstantExpressionUnaryExpressionLeft: Equal Right: Equal

UnaryExpression UnaryExpression

ConstantExpression ConstantExpression

Expression trees are created based on a number of objects. When you define an
Expression, you will have internally created a number of Expression objects,
each of which bears a special meaning to the compiler.

The entire expression is built using the building blocks, such as BinaryExpression based on
its Type, contains Left and Right properties, which are individual Expression attributes
themselves. Any logical Expression contains one UnaryExpression, a ConstantTerm, and so on.

Why IQueryable exists?
IQueryable is a special interface which is used whenever we need an expression to be
stored, and at runtime need to be compiled to produce a result. With the use of Expression
trees you can store the logic of a method as data and evaluate the same by building the
function dynamically on the fly. If you look closely into the IQueryable interface or if you
look into any of the extension methods Where, Select, and so on, they are basically storing
the anonymous methods into an Expression that eventually loads the whole expression
tree within it. So any minor change to the Lambda expression will not eventually create a
completely new anonymous method, rather it will add up to the expression tree and will be
compiled dynamically on demand when the actual evaluation of the statement occurs.

Let's look at the structure of IQueryable:

public interface IQueryable : IEnumerable
{
 Type ElementType { get; }
 Expression Expression { get; }
 IQueryProvider Provider { get; }
}

.NET Languages and its Construct

50

You can see that IQueryable holds an Expression. So when an expression is passed
to an IQueryable, it just holds it in a complete expression tree which it will evaluate
using IQueryProvider at runtime. IQueryProvider actually calls CreateQuery to
get the QueryEvaluation from the Expression, and which will eventually be evaluated
during runtime.

See also
 f http://bit.ly/Linq-basics

 f http://bit.ly/LINQ-Internals

Using dynamic objects in .NET
C# being a strongly typed language, you might wonder how you could make it dynamic. In
C# everything that we define will have a strong signature. There are numerous languages
available, such as Python, Ruby, and most notably JavaScript which are not strongly typed,
and you can change the object anytime whenever you require. C# 3.5 or below doesn't
support changing the type dynamically during runtime. But as a developer we generally
miss this flexibility of the language. But seriously that shouldn't change the class of the
language like what C# is. I mean, by adding up features like dynamic language we shouldn't
compromise with C# as a strongly typed language.

Microsoft introduced dynamic in C# with C# 4.0. But believe me, C# is not yet a truly
a dynamic language. Let us talk about dynamic keywords a bit for the time being.

Getting ready
When I first came to know about dynamic in C# 4.0, I wondered about its requirements.
We have an object that can hold any number of objects in it, as it is called as the mother
of all objects. Objects can hold anonymous types or even call properties or methods of an
anonymous type easily. So what exactly do we require for dynamic? To demonstrate the
situation let us take the example of how you can call properties or methods of an object for
which you don't know the exact type.

Let us have a class Person which is as follows:

internal class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public double Weight { get; set; }
 public string GreetMe()
 {

Appendix

51

 return string.Format("Hello {0}", this.Name);
 }
}

Now let our method GetObject return an object of the Person class as object. So to call
properties or methods we would write:

public void ResolveStatic(object obj)
{
 PropertyInfo pinfo = obj.GetType().GetProperty("Name");

 //To Get from a property Name
 object value = pinfo.GetValue(obj, null);
 string content = value as string;
Console.WriteLine(content);

 // To Set to Property Name
 pinfo.SetValue(obj, "Abhijit", null);

 //Invoke a method
 MethodInfo minfo = obj.GetType().GetMethod("GreetMe");
 string retMessage = minfo.Invoke(obj, null) as string;

 Console.WriteLine(retMessage);
}

This is really what you expect to write. Does it look complex to you? Yes, it is. Probably if
you have more flexibility like static method, or multiple arguments for a method, or even
an indexer, your code will look horrendous.

The dynamic keyword helps you in this regard. Yes, you can simply call methods and
properties in your code without writing the whole reflection methods, and the compiler
will do them for you. So doing the same thing with dynamic, the code will look as follows:

public void ResolveDynamic(dynamic obj)
{
 Console.WriteLine(obj.Name);
 obj.Name = "Abhijit";

 Console.WriteLine(obj.GreetMe());
}

So the code looks the simplest and the same as known types. Actually if you see through the
reflector, you will see that the same code is created by the compiler for us. So, the dynamic
keyword makes our code look simple for dynamic types and also makes the code easy
to understand.

Let us discuss the true feature of dynamic in detail.

.NET Languages and its Construct

52

How to do it...
1. Create an object of ExpandoObject that exists in .NET 4.0 as a Type.

2. Start typing properties/methods on an object that are assigned in the
dynamic variable.

3. Call them on the fly, compile it, and run it.

4. When the code gets compiled, you get the output exactly in such a way that
the object actually has those properties and methods inside it. Let us take
the following example:
dynamic d = new ExpandoObject();
d.Name = "Abhishek Sur";
d.Age = 26;
d.Weight = 62.5d;
d.GreetMe = new Action(delegate()
{
 Console.WriteLine("Hello {0}", d.Name);
});

Here when we execute the code above the object, d can assign the name into its
property, the age, weight, and can also call the method GreetMe.

How it works...
ExpandoObject is a new class added to enhance the dynamic capabilities of C# 4.0.
ExpandoObject lets you add methods or members to an object dynamically during runtime.
If you are wondering how it is possible, or the depth behind creating the ExpandoObject
class, let's read further to create your own DynamicObject.

DynamicObject

External
World Methods

Properties
Fields

To understand how a statically typed language can extend properties and class in runtime,
or how this could be made possible, you need to delve deep into the internal structure
of ExpandoObject.

Appendix

53

Actually ExpandoObject is a Collection of KeyValuePair where the key represents the
interface through which the objects are called for, and the value is the object which might be
a string, an object, or a method depending on what you pass. When we pass the methods or
properties to ExpandoObject, it actually adds those as a KeyValuePair into its collection,
and when the object is invoked it calls up the method or property dynamically.

Now to create your own custom ExpandoObject, you need to inherit your class from
IDynamicMetaObjectProvider. This interface has a method called GetMetaObject,
which you need to implement to create DynamicMetaObject from the LINQ expression.
At the first instance, it seemed to me as a trivia, but it is not. You actually need to parse the
complex LINQ expression to create your meta object. I must thank Microsoft for giving an
implementation of IDynamicMetaObjectProvider as DynamicObject. So for simplicity,
you can inherit your class from DynamicObject and get your job done.

Let us implement our class from DynamicObject:

public class CustomExpando : DynamicObject
 {
 public IDictionary<string, object> Dictionary { get; set; }
 public CustomExpando()
 {
 this.Dictionary = new Dictionary<string, object>();
 }

 public int Count { get { return this.Dictionary.Keys.Count; } }
 public override bool TryGetMember(GetMemberBinder binder, out
object result)
 {
 if (this.Dictionary.ContainsKey(binder.Name))
 {
 result = this.Dictionary[binder.Name];
 return true;
 }
 return base.TryGetMember(binder, out result); //means result =
null and return = false
 }

 public override bool TrySetMember(SetMemberBinder binder, object
value)
 {
 if (!this.Dictionary.ContainsKey(binder.Name))
 {
 this.Dictionary.Add(binder.Name, value);
 }
 else
 this.Dictionary[binder.Name] = value;

.NET Languages and its Construct

54

 return true;
 }

 public override bool TryInvokeMember(InvokeMemberBinder binder,
object[] args, out object result)
 {
 if (this.Dictionary.ContainsKey(binder.Name) && this.
Dictionary[binder.Name] is Delegate)
 {
 Delegate del = this.Dictionary[binder.Name] as
Delegate;
 result = del.DynamicInvoke(args);
 return true;
 }
 return base.TryInvokeMember(binder, args, out result);
 }

 public override bool TryDeleteMember(DeleteMemberBinder binder)
 {
 if (this.Dictionary.ContainsKey(binder.Name))
 {
 this.Dictionary.Remove(binder.Name);
 return true;
 }

 return base.TryDeleteMember(binder);
 }

 public override IEnumerable<string> GetDynamicMemberNames()
 {
 foreach (string name in this.Dictionary.Keys)
 yield return name;
 }
}

Here we have overridden methods:

 f TryGetMember: This is called when the Get method of a property is called. If
returned true, the value in the result will be returned.

 f TrySetMember: This is called when the Set method of a property is called. If
returned true, the value in the result will be set to the member.

 f TryInvokeMember: This is called when a delegate/method is called. The result will
be returned.

We use a dictionary to store the key value collection of the methods and properties. As
you can see that TryGetMember/TrySetMember and TryInvokeMember will be called
automatically during runtime, if we can handle these methods properly, we can execute
some code to that expanded object.

Appendix

55

Unless others are required, you can use these members only to have an ExpandoObject. To
use this class we use the following:

dynamic expandoObject = new CustomExpando();
expandoObject.Name = "Akash";
expandoObject.CallMe = new Func<string, string>(delegate(string name)
{
 expandoObject.Name = name;
 return expandoObject.Name;
});

Console.WriteLine(expandoObject.Name);
Console.WriteLine(expandoObject.CallMe("Hello"));

The call to the method will be translated to the collection and the call from the object will
call the interface members accordingly. As you have seen, we have actually invoked the
appropriate property from within the class, Console.WriteLines will be successful. You
can remove a member from the list using the following:

expandoObject.Dictionary.Remove("Name");

This is it. Now you can handle your ExpandoObject yourself.

There's more...
Dynamic features of .NET are greatly enhanced by many other important facts.

Difference between var and dynamic
Even though both look the same to a normal developer, they are widely different in terms of
actual implementation. var is a static type that is inferred during compile time. It depends
on the object that has been assigned to it, which infers its type during compile time. Thus,
when we assign string to a var, it automatically starts behaving like a string variable. var
just allows the programmer the flexibility to omit the left-hand side initialization of type. var is
entirely statically defined and if you look at the actual compiled code in the assembly, you will
see the actual replacement of the assigned type to its assignee.

Dynamic means that any expression that is going to be executed is bound at execution time,
rather than compile time, so it behaves dynamically. The compiler is not going to check
a dynamic object for its methods and its bindings. The behavior of the dynamic object is
determined at execution time.

The object that is actually declared as dynamic internally implements
IDynamicMetaObjectProvider. This interface helps in determining and responding
to the actual method call during runtime. The call states and binders don't exist at all.

.NET Languages and its Construct

56

Dynamic and COM Interop
Dynamic feature of the language actually helps a lot with COM Interop services. The C# team
specifically dealt with many features and implemented the dynamic part of it inside Office
products like Word, Excel, and so on. When working with the Interop services with Excel, the
objects are replaced dynamically to make it easier to work with and avoid casting. Let us look
at the following code:

var excel = new Excel.Application();
excel.Workbook.Add();
excel.Visible = true;
Excel.Range targetRange = excelApp.Range["A1"];
targetRange.Value = "Abhishek";
targetRange.Columns[1].AutoFit();

Here the code looks very simple because all the columns are made dynamic instead
of previously where we needed to cast the object into appropriate types. The last line in the
previous version before dynamic was introduced needs to be written as:

(Excel.Range)targetRange.Columns[1, Type.Missing].AutoFit();

We needed the cast before as columns returned an object to which we cannot call AutoFit.

See also
 f http://bit.ly/Dynamic-Types

Compiler as service
With the introduction of newer technologies and enhancements in the languages under
.NET, the applications are getting more and more powerful to add things that were never
easy before. .NET languages are continuously evolving with newer types and technologies
that make it much more advanced and useful in most scenarios. Compiler as service is
a new concept that has been released very recently with .NET, and is one of the major
enhancements to it.

Most of the languages that we regularly deal with are often thought of as black boxes that
take source code as input and produce binaries as output. The internal logic on how the entire
process of compilation works is still not exposed to the application programmers. Compiler
as a service is a new enhancement made to the compiler which allows the application
programmer to query the compiler to get information at various stages of compilation. In
this recipe I am going to cover a basic introduction to compiler as service and get you
through the capabilities that it posses.

Appendix

57

Getting ready
To start with this recipe, let us consider the things that a compiler does after we kick off the
build process. The first thing that the compiler does is parse the code that we pass to the
compiler. There are specific parsers available for each compiler that parse and understands
the code. The next thing it does is that it identifies symbols and metadata to import external
files or assemblies. The most important process is done by the Binder, which binds symbols
with actual calls. And finally it emits the IL into an assembly file. Roslyn project, or more
specifically the compiler as a service, exposes these features of the compiler as a service and
give you an API to actually get information out of these compilation tasks.

Syntax Tree API Symbol API
Binding and Flow

Analysis API

Parser
Symbols and

Metadata Import Binder

Compiler API

Compiler Pipeline IL Emitter

Emit API

In the preceding figure, if you look at the bottom of the image, it tells you about the Compiler
Pipeline block that I just stated. In this section, the Parser block is available through Syntax
Tree API, the Symbol API exposes the symbols, Binding and FlowAnalysis API exposes the
Binder, and finally Emit API exposes the IL Emitter.

How to do it...
In this module, we are going to brief on each of these sections one-by-one and also look at
how to get benefit out of these.

1. Start a Windows Application, and paste a textbox and a button. Say the textbox
represents the source code and the button represents the command to parse the text.
SyntaxTree tree = SyntaxTree.ParseCompilationUnit(this.textBox1.
Text);
AssemblyFileReference mscorlib = new AssemblyFileReference(typeof(
object).Assembly.Location);
 Compilation compilation = Compilation.Create("Random");
compilation.AddReferences(mscorlib);
compilation.AddSyntaxTrees(tree);

http://msdn.microsoft.com/en-us/vstudio/hh500769.aspx

.NET Languages and its Construct

58

The preceding code represents the full syntax tree of the compilation. The
first line takes the whole program that needs to build a compilation unit.
ParseCompilationUnit parses the source code into a SyntaxTree. By the
way, we added the mscorlib.dll to the compilation and created a compilation.

2. We add a treeView and a PropertyGrid to the form, and on TreeView.
NodeMouseClick we select the object in the PropertyGrid.

3. The root of the compilation unit is determined by using the GetRoot method of
the CompilationUnit.

4. From the root, we can parse collections like Usings to get the information about
the Using added to the compilation unit or members to get types.
var root = (CompilationUnitSyntax)tree.GetRoot();

foreach (var theusing in root.Usings)

{

 TreeNode node = new TreeNode(string.Format("{0} - {1}",
theusing.Kind, theusing.Name));

 node.Tag = theusing;

 tnode.Nodes.Add(node);

}

In the preceding code, we got the CompilationUnitSyntax from the root and
added the Usings associated with the code into the TreeView. It is important to
note that we added the actual object to the tag of each node, so that we can select
the object from its tag to the PropertyGrid. The Usings has a kind and a name,
which determines the SyntaxType and the text of Using respectively. The actual
Type of the usings is UsingDirectiveSyntax.

5. Similarly, we can also use root.Members to get the collection of
MemberDeclarationSyntax. This member is possibly a collection of
NamespaceDeclarationSyntax or a TypeDeclarationSyntax. Each of them
has its own members. In the case of NamespaceDeclarationSyntax it holds a
collection of TypeDeclarationSyntax and the TypeDeclarationSyntax
holds a collection of MethodDeclarationSyntax.

6. We add each element to the tree to get the complete syntax tree hierarchy of
the code.

Appendix

59

How it works...
The following screenshot shows the entire hierarchy of the program:

If you navigate over the syntax tree, you can determine each and every individual statement
for the whole compilation unit. When you create a compilationUnit the SyntaxTree
parser creates individual objects that resemble the whole program. Each and everything from
the start of the program to the end of the program, tokens, expressions, or return values, are
tracked within its syntax tree. The SyntaxTree object has a universal property called Kind
which determines the exact type of the syntax. For instance, the ExpressionStatement
is a value of the enumeration SyntaxKind. The SyntaxKind holds virtually every kind of
syntaxes that the C# compiler supports.

You can create a query over the syntax tree after you built the compilationUnit.
Remember, building a CompilationUnit does not mean building an assembly. It produces
the objects on the fly in memory, so it is safe to build more than one compilationUnit
for comparison.

.NET Languages and its Construct

60

To query in a syntax tree, we can define a semanticModel out of the tree. Let us
suppose we want to query the symbol associated with the First method declared
in the compilation tree:

SemanticModel semanticModel = compilation.GetSemanticModel(tree);
MethodDeclarationSyntax methodDecl = tree.GetRoot()
 .DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .First();
Symbol methodSymbol = semanticModel.GetDeclaredSymbol(methodDecl);

The query gets the symbol that resembles the First method on the type. As you can see,
the DescendantNodes returns all the nodes on the SyntaxTree from the root, we can
easily get the exact SyntaxElement from the tree using LINQ.

InvocationExpressionSyntax invocation = methodDecl.DescendantNodes()
 .OfType<InvocationExpressionSyntax>()
 .First();
SymbolInfo info = semanticModel.GetSymbolInfo(invocation);
Symbol invokedSymbol = info.Symbol;

For instance in the preceding code, we select the First expression from the method. The
Symbol result represents the whole information about the expression.

Similar to the one shown in the preceding code, we can query other types using appropriate
symbols in the code.

There's more...
By the way, compiler as a service exposes lot of additional APIs in addition to Syntax or
Semantic API. Let's discuss some more interesting things that you can do with Roslyn.

How to add C# scripting Support?
Roslyn APIs allow you to expose C# scripting APIs and compile expressions dynamically at
runtime. You can define and interact with the program directly while you are running your
code. You can use the C# interactive window to actually get a flavor of the same from
the IDE.

To add scripting support on an application we need to:

1. Use Roslyn scripting APIs to create C# script engine

2. Create a session that holds all the execution context of the Interactive window

3. Execute each C# code supplied in the host specified scope

Appendix

61

4. Push function definitions as command implementations and add to the
command collection

5. Add appropriate references beforehand to execute library functions

Let us consider the implementation of the most basic interactive host:

public class InteractiveHost
{
 ScriptEngine engine = null;
 Session session = null;

 public InteractiveHost()
 {
 engine = new ScriptEngine(new[] {"System", this.GetType().
Assembly.Location});
 session = Session.Create();
 }

 public object ExecuteCode(string code)
 {
 return this.engine.Execute(code, this.session);
 }
}

The first thing that I did here was create ScriptEngine. The ScriptEngine actually
creates an engine where the C# code will be executed. We have passed a few namespaces
that we need to add in to start with. One of them is System and also added the reference of
this assembly. The other thing that you need to notice is the Session. When we create a new
Session, all the existing execution is made under that Session. So when we execute an
expression within a Session, all the previous executions will be available to it.

InteractiveHost host = new InteractiveHost();

bool isExecute = true;
while (isExecute)
{
 string command = Console.ReadLine();
 Console.WriteLine(host.ExecuteCode(command));

 var rkey = Console.ReadKey();
 isExecute = rkey.Key != ConsoleKey.Escape;
}

.NET Languages and its Construct

62

If I run this code, I will get the following output:

Now from the Console if I execute commands like the one shown in the preceding screenshot,
we could create integer variables x and y directly from the engine, and then create a method
getResult which can again be executed on the fly to get the sum of x and y (30). This is the
simplest implementation of the Interactive window.

	_GoBack

