
Securing Fusion Web
Applications

Security is an important part of any enterprise application. Security implementation
in an application decides who can access the application and what they can do once
they are logged in. This chapter describes how you can visually enable security in the
different layers of your Fusion web application. The following topics are discussed
in this chapter:

•	 Securing Fusion web applications
•	 Securing the business service layer
•	 Securing the view and model layer

Introduction
As you know, Oracle ADF is an end-to-end application framework built on top of the
Java EE stack. The Java Authentication and Authorization Services (JAAS) is a Java
security framework typically used for securing Java EE applications. Oracle fusion
middleware simplifies the security model offered by Java and Java EE stack and
provides a portable, feature-rich enterprise level security solution through Oracle
Platform Security Services (OPSS).

The OPSS is set of portable security services built on top of Java and Java
EE stack abstracting the underlying security and identity management
details. To learn more about OPSS, refer to the topic Oracle Platform
Security Services available online at: http://www.oracle.com/
technetwork/middleware/id-mgmt/index-100381.html.

Securing Fusion Web Applications

[2]

Oracle ADF security leverages the OPSS services for authentication and
authorization of business users of the system. The ADF security framework
at a high level offers the following:

•	 Integration with JDeveloper IDE to provide visual and
declarative development

•	 Simplified security EL expressions which can be used in the web pages to
control the access of UI elements

•	 End-to-end coverage and security of all layers of the application

The rest of the sections in this chapter will make you familiar you with the
techniques you can use to implement ADF security for your Fusion web application.

Securing Fusion web applications
The JDeveloper IDE provides visual and declarative support to secure your ADF
web application. It abstracts the underlying security implementation and frees
you from the complexity of security APIs. In this section you will learn to use the
JDeveloper design time features for securing a typical Fusion web application.

Configuring ADF security
In this section you will learn to enable authentication and authorization for your
Fusion web application. To enable security for a Fusion web application, perform
the following steps:

1.	 In the main menu, select the Application | Security | Configure ADF
Security menu item. While doing so, the IDE will display the Configure ADF
Security dialog.

2.	 In the first screen of the Configure ADF Security dialog, choose ADF
Authentication and Authorization and click on Next.

3.	 Select the web project which needs to be secured and then Authentication
Type in the next screen. The authentication types that you choose decide
the login form type for your application.

Chapter 14

[3]

The following are the authentication types displayed in this page:

°° HTTP Basic Authentication: This uses the default browser
login dialog.

°° HTTP Digest Authentication: When you use this option the browser
client encrypts the password before sending it to the server.

°° HTTPS Client Authentication (public key certificate): This uses
public key certificates to perform client authentication over a secure
HTTP connection.

°° Form-Based Client Authentication: When you select this option, the
IDE allows you to choose either of the following:

i.	 Choose to use the default login and error pages generated
by the IDE.

ii.	 Choose the custom login and error page option, which will
allow you to specify the custom login page you made.

For this example, select the HTTP Basic Authentication type and click on
Next to continue.

4.	 Select No Automatic Grants in the Automatic Policy Grant screen. The No
Automatic Grants option locks down all the application resources unless you
explicitly specify access to them. Click on Next.

5.	 In the authenticated Welcome screen, choose Redirect Upon Successful
Authentication and then configure the welcome page. If you specify the
ADF Faces page, then make sure you added /faces at the beginning of the
URL. For example, /faces/welcome.jspx.

6.	 Click on Finish to complete the wizard.

Securing Fusion Web Applications

[4]

ADF security artefacts
When you enable security for a Fusion application, the IDE updates (or creates
them if they not exist) the security related configuration files for the application,
such as web.xml, adf-config.xml, weblogic.xml, jps-config.xml, cwallet.sso,
and jazn-data.xml. Let us take a quick look these files and understand their role in
managing security.

•	 web.xml: When you enable security, the IDE adds the following security
related configurations in this file:

i.	 Authentication servlet for enforcing secured access to the
system (oracle.adf.share.security.authentication.
AuthenticationServlet): When a request reaches the server,
this servlet intercepts the request and checks whether the user
has logged in to the system. If user is not logged in, then the
system challenges the user with a login form.

Chapter 14

[5]

ii.	 The JPS filter configuration (oracle.security.jps.ee.http.
JpsFilter): This filter is used for setting up the OPSS policy
provider.

•	 adf-config.xml: This file stores the JaasSecurityContext entry which
contains flags for enforcing the authentication and authorization checks.

•	 weblogic.xml: This file contains mapping between the valid users, security
role and the OPSS user principal.

•	 jps-config.xml: This file contains metadata definitions for security services
such as login modules, authentication providers, authorization policy
providers, and credential stores.

•	 jazn-data.xml: This file contains the identity store and policy stores that you
add while securing a Fusion web application.
The identity store includes business users added to the application, and
policy stores include resource types, permissions, application roles, and
policy details describing what roles can access which resources. The
identities are what authentication requests are done against.

•	 cwallet.sso: This file encrypts and stores the user credentials used in
the application.

Once you enable security for an application, the steps that follow in securing the
application are to define application roles, define users, role-user mapping, and
granting appropriate resource permissions for roles. These are explained in the
coming sections.

Defining application roles and users
To define application roles, perform the following steps:

1.	 Select Application | Security | Application Roles in the main menu. On
selecting this menu item, the IDE opens up jazn-data.xml in the overview
editor with the Application Roles tab selected.

2.	 To define new application roles, click on the green plus icon in the Roles
panel and select the Add New Roles option from the drop-down menu.
Enter Name, Display Name, and Description for the new role. In the
Mappings tab, click on the green plus icon to add users and enterprise roles
to the newly created role.

Note that you can group application roles under the existing roles to simulate the
role hierarchy in an enterprise.

Securing Fusion Web Applications

[6]

Application roles versus enterprise roles
When you define roles, you have two options. You can define them either as
application roles or as enterprise roles. Application roles are local to an application
and it can contain only users and roles defined in the application, whereas enterprise
roles are available to all applications deployed in the domain. You will use these
roles later while granting resource permissions.

Although ADF security allows you to grant resource permissions to users through
enterprise roles and application roles, as a best practice, is recommended to grant
permissions directly to application roles alone in real-life applications. Later you can
map users and enterprise roles to appropriate application roles. This approach gives
you more flexibility in terms of security implementation.

Providing resource grants
In the previous sections we learned how to enable security in a Fusion web
application and also learned about application roles. In this section we will learn
how to configure access rights for each role. Access rights are defined using security
policies which define roles or users who can access a resource, along with the actions
they can perform on it.

To provide resource grants in an ADF application, perform the following steps:

1.	 Select the Resource Grants tab in the overview editor of jazn-data.xml.
2.	 Select the appropriate Resource Type in the drop-down list. The resource

types listed are as follows: ADF Entity Object, ADF Entity Object Attribute,
ADF Method, Task Flow, Web Page, and Custom Resource Types. You can
use the search icon in the Source Project field to pick up the appropriate source
project to look up the resources that need to be secured. For example, if you
choose a web page as a resource type, the Resources table will list all the pages
from the web project that you selected as the source. Note that you can secure
only web pages with a page definition file in the Resource Grant screen.

3.	 You can use the Resource Grant screen to restrict the access of resources.
To specify grants, select the appropriate resource in the Resources table
and then click on the green plus icon in the Granted To panel header to
add appropriate grantees, such as application role, user, enterprise role,
and code source.

4.	 Once you have defined a grantee, the next step would be to specify the
authorized actions that the grantee can perform on the resource. The
following screenshot displays the Resource Grants editor window for
the department page. In this example, the view action on the dept page is
granted to all users belonging to standard-role.

Chapter 14

[7]

You must select the view action alone while granting actions on a web page.
The other actions listed in the editor for a web page such as customize, grant,
view, and personalize actions are for use by the Oracle Composer.

Using entitlement grants to aggregate
resources
The entitlement grant allows you to group resources and corresponding actions
into a single named security group that can be granted to application roles using
a single grant statement. This simplifies the security configuration. For example, if
your application has many task flows and web pages that are accessible to different
application roles with similar action permissions, then you can create a single
entitlement group with the appropriate resource grants and allowed actions on the
granted resources. Later you can map the desired application roles to this group in
one go.

To define the entitlement grant, perform the following steps:

1.	 Select the Entitlement Grants tab in the editor. Click on the green plus icon
to add the entitlement. Specify Name and Display Name.

2.	 To add member resources to this security group, click on the green plus icon
in the Member Resources panel header. Choose the desired resources in the
Select Resources pop up. Select the appropriate actions for each member
resource that you have added.

Securing Fusion Web Applications

[8]

3.	 To map application roles to the grantee list for an entitlement, open the
Grants tab and add application roles as appropriate.

4.	 You can click on the Save icon displayed in the main toolbar to save all
changes that you made.

Securing the business service layer
The Oracle ADF security framework is very comprehensive and covers all layers
of the application. In this section you will see the features offered by ADF Business
Components for securing business data and business service methods.

Securing data update operations
ADF entity objects handle the posting of changes to the data source in a Fusion
web application. You can leverage the security features offered by entity objects to
authorize all the data update operations on entity rows. Oracle ADF allows you to
authorize operations on an entity object at two levels:

•	 Entity object level: The entity level security settings are used to authorize
operations such as read, update, and remove on entity object rows

•	 Attribute level: The attribute level security settings are used to authorize
update on entity object attributes

To enable security for an entity object, open the desired entity object in the overview
editor. Select the General tab and expand the Security section. The Security section
displays read, update, and removeCurrentRow operations for the entity object.
Select the appropriate operations that need to be enabled on the entity object.

To enable security at the attribute level of an entity object, select the desired attribute
in the overview editor of the entity object. Switch to the Security tab and choose the
update operation.

The following example illustrates the permission entry added for the read, update,
and removeCurrentRow operations on the DepartmentEO entity object:

Chapter 14

[9]

<Entity ...
 <Permission target="com.packtpub.adfguide.ch14.model.entity.
DepartmentEO" permissionClass="oracle.adf.share.security.
authorization.EntityPermission">
 <privilege-map
 operation="read"
 privilege="read"/>
 <privilege-map
 operation="update"
 privilege="update"/>
 <privilege-map
 operation="removeCurrentRow"
 privilege="delete"/>
 </Permission>
</Entity>

Once you have enabled the operations on an entity object, you can grant entity
permissions to application roles.

To grant entity permissions to application roles, perform the following steps:

1.	 Select the appropriate entity object in the Application panel.
2.	 Go to the structure window, right-click on the security enabled entity object

or entity attribute node, and choose Edit Authorization in the menu.
This is shown in the following screenshot:

Securing Fusion Web Applications

[10]

3.	 When you choose the Edit Authorization option, the IDE will display the
jazn-data.xml file in the overview editor with the Resource Grants tab
opened. Click on the Add Grant button displayed in the Granted To
column header and select the appropriate grantees. Select the
appropriate Actions that you want to grant.

4.	 Click on the Save icon in the main toolbar to save changes.

What happens at runtime?
At runtime when the user queries a view object that uses security-enabled entity
objects or when the user updates a security-enabled entity object row, the framework
will read the associated permission clauses for the underlying entity objects and
perform a security check before carrying out the requested action. Based on the
resource grant settings in the entity object, the framework will allow or disallow
the operation.

Defining custom resource types
Oracle ADF security provides many features out of the box for securing various
application resources. However, some enterprises may have specific authorization
policies which may call for special treatment while enabling security for business
applications. While working in such applications you may end up going beyond
the built-in features and creating custom resource permissions for authorizing
access to various application resources. In this section you will see how the ADF
framework help you define custom permissions and use it to ensure authorized
access of resources.

To define a custom resource type, perform the following steps:

1.	 Locate the jazn-data.xml file under the META-INF folder in the Application
Resources panel.

2.	 Open the jazn-data.xml in the overview editor and select the Resource
Grants tab. Click on the green plus icon located next to the Resource Type
drop-down list.

3.	 In the Create Resource Type dialog, enter Name, Display Name, and
Description for the custom resource type. The IDE will pre-populate the
Matcher Class name to the oracle.security.jps.ResourcePermission
class. This is a generic permission class that represents the access rights to
resources of a particular type and allows the underlying policy providers to
make authorization decisions on the resources as appropriate.

Chapter 14

[11]

4.	 Click on the green plus icon displayed in the Actions panel (displayed at the
bottom of the Create Resource Type dialog) to add appropriate actions for
the resource type. Click on OK to save changes and dispose of the dialog.
Once you have defined the resource type, you can map the resources to it by
performing the following steps.

1.	 Click on the green plus icon in the Resource panel window to map the
resources to the resource type. In the Create Resource dialog choose
Resource Type; specify Name, Display Name, and Description.

2.	 Click on OK to save changes.

You can use the Resource Grants tab in the overview editor for granting access of
resources types to desired roles. The following section is an example.

An example using a custom resource type for
controlling data updates
In this example we will see how a custom resource type can be used for controlling
updates on an entity row. This example allows updates only on newly created
entity rows.

The following screenshot displays the definition for the ADFEntityRow resource
type used in the example. ADFEntityRow supports create, delete, and update
actions which are displayed in the Actions section in the dialog:

Securing Fusion Web Applications

[12]

This example uses ADFEntityRow to control operations on the DepartmentEO
entity object. DepartmentEO is used in this example just to keep things simple;
you are free to use any entity object name that you want to secure. To complete the
security settings for this example you must add DepartmentEO as a resource to
the ADFEntityRow type and grant appropriate resource permissions to suitable
roles. The following screenshot displays the mapping of DepartmentEO to the
ADFEntityRow type with the update action granted to a standard role.

The basic infrastructural setup for the purpose of using a custom resource type for
checking access rights should be ready by now. The following part will show you
how to use this custom resource type to control updates on the DepartmentEO
entity object.

Generate a Java class for DepartmentEO and override the isAttributeUpdateable()
method. The ADF Business Component framework invokes
isAttributeUpdateable() in an oracle.jbo.server.EntityImpl instance before
updating each attribute. This example overrides the isAttributeUpdateable()
method in DepartmentEOImpl to conditionally enable updates on attributes in the
DepartmentEO entity instance. This example defaults the attribute values for newly
created entity rows, and allows the user with special rights to override the defaults
values. The algorithm used in this method is as follows:

1.	 It checks whether security is enabled for the attribute and if true continues
with the next step.

2.	 Checks if the current row is new and if found true, continues with the next
step. This method will take the default execution path if the current row is in
the unmodified state.

Chapter 14

[13]

3.	 Checks if the current user has the ADFEntityRow resource permission
enabled with the update privilege. If all the previous conditions are met, then
return true to enable updates on this attribute.

//In entity object implementation class (DepartmentEOImpl)

DataSecurityProviderManager _mDataSecurityMgr = null;
/**
 * Checks if the attribute is updateable.
 */
@Override
public boolean isAttributeUpdateable(int index) {
 DBTransactionImpl dbtransaction = (DBTransactionImpl)this.
getDBTransaction();
 DataSecurityProvider provider = _getDataSecurityProvider();
 if (provider == null) {
 return super.isAttributeUpdateable(index);
 }
 EntityCache ec = getEntityCache();
 AttributeDefImpl attrDef = (AttributeDefImpl)ec.
 getAttributeDef(index);
 String key = attrDef.getName();
 BindingPermissionDef permDef = attrDef.getPermissionDef();
 String privToCheck = (permDef == null ? null :
 permDef.findPrivilege(PermissionHelper.UPDATE_ACTION));
 //Variable privToCheck is null if no security has been
 // enabled on the entity attribute.
 //Note that Security can be enabled by choosing the Edit
 //Security option on the attribute context menu in
 //the Structure Window
 if (privToCheck == null) {
 return super.isAttributeUpdateable(index);
 }
 //check if attribute is new (insert case)
 if (getPostState() == STATUS_NEW ||
 getPostState() == STATUS_INITIALIZED) {
 //build ResourcePermission
 //type = ADFEntityRow, Action = update
 String type = "ADFEntityRow";
 String entityName = this.getEntityDef().getName();
 String action = "update";

Securing Fusion Web Applications

[14]

 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 ResourcePermission resourcePermission = new
 ResourcePermission(type, entityName, action);
 boolean userHasPermission =
 securityCtx.hasPermission(resourcePermission);

 if (userHasPermission) {
 return true;
 }
 return false;
 }
 return super.isAttributeUpdateable(index);

}

//The following is helper method to get DataSecurityProvider
//Note that DBTransactionImpl:: getDataSecurityProvider() is //
package private, hence not used
DataSecurityProvider _getDataSecurityProvider() {
 if (_mDataSecurityMgr == null) {
 DBTransactionImpl dbtransaction =
 (DBTransactionImpl)this.getDBTransaction();
 _mDataSecurityMgr = new
 DataSecurityProviderManager(dbtransaction);
 }
 return _mDataSecurityMgr.getDataSecurityProvider();
}

Securing the data access layer
The data access layer in an application provides a simplified access to business data
stored in persistent storage. ADF view objects build the data access layer for a Fusion
web application. This section shows you how to enable authorization checks in the
data access layer of a Fusion web application. Let us see the features provided by a
view object to authorize each caller prior to returning the data requested by the client
so that users are only able to see their own data.

Chapter 14

[15]

Authorization check in view objects with secured
entity object usages
The ADF framework has built-in support to secure data rows returned by a view
object. When you execute a view object backed up by security-enabled entity object
usages, it will invoke the oracle.jbo.DataSecurityProvider implementation
configured in adf-config.xml during the query preparation phase in order to
identify the WHERE clause fragment that needs to be added to the SQL statement for
preventing unauthorized access to data rows. The default DataSecurityProvider
implementation used by the ADF framework is oracle.jbo.server.security.
JAASDataSecurityProviderImpl. If the authenticated user does not have read
permission for the entity usages in a view object, JAASDataSecurityProviderImpl
will append a dummy condition "1 = 2" to the WHERE clause of the query string
preventing unauthorized access of data rows. The generated SELECT clause will look
like the following:

SELECT <COLIMN_NAMES> FROM <TABLE_NAME> WHERE 1=2.

Referencing an authenticated username in the SQL
WHERE clause
A common use case across many business applications involves preventing a logged
in user viewing unauthorized business data. The target database table for such
applications may typically have a column to hold the username and you will use this
column in the SQL WHERE clause to pull up the records for the specified username.

To filter rows returned by a view object based on the logged in username, edit the
query in the view object, and add the WHERE clause with a bind variable name as in
the following example:

Where="EmployeeEO.NAME = :currentUserName".

Securing Fusion Web Applications

[16]

Define the bind variable currentUserName as shown in the following screenshot.
The value is set using the Groovy expression adf.context.securityContext.
userName which points to the logged in user principal. Mark Value Type as
Expression and select the Required option.

Note that if you use this bind variable in the view criteria, you must deselect the
Required checkbox.

Using a custom criteria adapter implementation to
add an authorization check in a view object
The built-in support by the view object may be enough to secure the data read
operations in most of the scenarios. However sometimes you may want to go
beyond the declarative features and may want to add custom security clauses to the
query at runtime. This section discusses a generic solution for such use cases. This
example defines an empty view criteria on the view object and overrides the default
query generation logic for this view criteria usage to build an appropriate SQL
WHERE clause fragment. The following section explains this solution in detail.

1.	 The first step is to define an empty view criteria on the view object. Make
sure you specify a unique name for the view criteria. The example used in
this section names the dummy view criteria created for generating security
clauses as SecurityEnabledEmptyVC_. We will use this name in the
custom criteria adaptor class to identify the dummy view criteria
added in the view object.

Chapter 14

[17]

2.	 Once you define the view criteria, you may need to associate it with
appropriate view object instances in the application module. To do this,
perform the following steps.

3.	 Open the application module in the overview editor and select the Data
Model tab.

4.	 Select the appropriate view object instance added to the application module
in the Data Model list, then click on Edit.

5.	 In the Edit View Instance window, shuttle the dummy view criteria that you
created to the Selected list.

6.	 The next step is to build a custom logic for generating the security predicate
when you execute the view object instance with the special view criteria
usage that we defined in step 1. This is explained as follows:
The view object component allows you to override the default query
generation implementation for the applied view criteria through a custom
oracle.jbo.CriteriaAdapter. We will use this approach to inject custom
security conditions in the query at runtime. If you need a quick brush up on
this topic, refer back to the topic Intercepting query generation for view criteria in
Chapter 5, Advanced Concepts on Entity Objects and View Objects.
The following is an example that uses the custom oracle.jbo.
CriteriaAdapter implementation for generating security predicates
when you execute a view object instance with security enabled view
criteria usage. This sample is kept simple to make the points clear. The
SecurityEnabledViewCriteriaAdapter implementation used in this
example returns the WHERE clause fragment with a custom security predicate
as <EO_Aliase>.USER_NAME = '<current_user_name>' for view object
instances with SecurityEnabledEmptyVC_ usage. You can use a similar
concept for more complex security checks in your application.
public class SecurityEnabledViewCriteriaAdapter extends
CriteriaAdapterImpl implements CriteriaAdapter {

 //Special view criteria name defined for injecting
 // security clause
 private static String SECVCNAME =
 "SecurityEnabledEmptyVC_";

 public SecurityEnabledViewCriteriaAdapter() {
 super();
 }

 /**

Securing Fusion Web Applications

[18]

 * Generate a security predicate for the view
 * criteria(if conditions are met).
 * This example appends WHERE clause fragment
 * USER_NAME = '<surrent_username>' with the query
 * @param criteria a view criteria instance
 * @return a where clause fragment
 */
 public String getCriteriaClause(ViewCriteria criteria) {
 ViewObjectImpl vo = (ViewObjectImpl)criteria.
 getViewObject();
 if (isSecurityEnabled() && isSecureVC(criteria)) {
 String loggedInUser = ADFContext.getCurrent().
 getSecurityContext().getUserName();
 ViewDefImpl voDef = (ViewDefImpl)vo.getDef();
 String securityClause =
 voDef.getEntityUsages()[0].
 getEntityDef().getAliasName() +
 ".USER_NAME = '" + loggedInUser + "'";
 return securityClause;
 }
 return super.getCriteriaClause(criteria);
 }

 /**
 * Check if security is enabled for the application
 * @return
 */
 private boolean isSecurityEnabled() {
 SecurityContext secCtx = ADFContext.getCurrent().
 getSecurityContext();
 return secCtx.isAuthorizationEnabled();
 }

 /**
 * Check if the view criteris is meant for
 * generating security predicates
 * @param vc
 * @return
 */
 public static boolean isSecureVC(ViewCriteria vc) {
 return ((vc == null) ? false :
 (vc.getName() == null ? false :
 vc.getName().equalsIgnoreCase(SECVCNAME)));
 }

}

Chapter 14

[19]

To hook this custom security enabled CriteriaAdapter implementation into
a view object, override the getCriteriaAdapter() method in the desired
view object implementation class as shown in the following code:

//In view object implementation class
/**
 * Return a custom CriteriaAdapter implementation
 * to generate where clause for ViewCriteria.
 *
 * @return Custom CriteriaAdapter implementation if
 * desired, or null.
 */
@Override
public CriteriaAdapter getCriteriaAdapter() {
 return new SecurityEnabledViewCriteriaAdapter();
}

7.	 To add the security enabled marker view criteria
(SecurityEnabledEmptyVC_ , defined in step 1) to a view object instance,
open the appropriate application module in the overview editor. In the
Data Model page, select the desired view object instance in the Data Model
selected list and click on the Edit button. In the Edit View Instance dialog,
shuttle the SecurityEnabledEmptyVC_ to the selected list. Alternatively,
you can call applyViewCriteria(…) on a view object to apply the view
criteria at runtime.
At runtime, when you execute a view object instance with view criteria
usage, the framework invokes the ViewObjectImpl::getCriteriaAda
pter() method to identify CriteriaAdapter used for generating the
WHERE clause fragment for the view criteria. This example returns the
SecurityEnabledViewCriteriaAdapter implementation class as a criteria
adaptor. This class is responsible for generating a custom security predicate
for view objects with the view criteria usage SecurityEnabledEmptyVC_.

Securing business service methods
Preventing unauthorized access to business services is very critical for any enterprise
application. ADF security offers method permission definitions for the purpose
of addressing such scenarios. Method permissions check if a user has the right to
execute a method defined in the application. ADF security allows you to secure
access to methods defined in the application through the oracle.adf.share.
security.authorization.MethodPermission class.

Securing Fusion Web Applications

[20]

To define method permissions in an application, perform the following steps:

1.	 Open the jazn-data.xml in the overview editor and select the Resources
Grant tab.

2.	 Choose ADF Method as Resource Type. Add a new Resource value.
3.	 In the Create Resource dialog, specify a fully qualified class name along with

a method name as value for the Name field. For example, if you are defining
the method permission for updateDeparment() defined in the class model.
service.HRServiceAppModuleImpl, the Name field is specified as model.
service.HRServiceAppModuleImpl.updateDeparment.

4.	 Click on OK to save the changes and dispose of the dialog.

You can use security expressions to refer to the method permission definitions to
control the display of action enabled UI components in a page. The ADF security
framework also exposes APIs for checking the method permission which can be used
to programmatically check the user privileges in the code. The following example
illustrates the usage of method permissions in an application.

An example using method permissions
Let us see how method permissions can be used in an EL expression to control the
display property of a command component.

The following is an example for a method permission definition in jazn-data.xml.
This definition describes the updateDeparment() method in the com.packtpub.
adfguide.service.HRServiceAppModuleImpl class:

<jazn-data ...>
...
 <resources>
 <resource>
 <name>
 model.service.HRServiceAppModuleImpl.updateDeparment
 </name>
 <display-name>updateDeparment</display-name>
 <description>updateDeparment</description>
 <type-name-ref>ADFMethodResourceType</type-name-ref>
 </resource>
 </resources>
</jazn-data>

Chapter 14

[21]

When you grant method permissions to an application role, the IDE will generate a
corresponding <permission> entry for the grantee in jazn-data.xml as follows:

<permission>
<class>
oracle.adf.share.security.authorization.MethodPermission
</class>
<name>
model.service.HRServiceAppModuleImpl.updateDeparment
</name>
<actions>invoke</actions>
</permission>

Using method permissions in an EL expression
The following component tag illustrates how the method permission that we defined
in this example can be referenced through EL to enable or disable components based
on the user rights for accessing the underlying operation:

<af:commandButton actionListener="#{bindings.updateDeparment.execute}"
 text="Update Department Details"
 disabled="#{!securityContext.userGrantedPermission['permissionCla
ss=oracle.adf.share.security.authorization.MethodPermission,target=
model.service.HRServiceAppModuleImpl.updateDeparment,action=invoke']}"
 id="cb6"/>

Using method permission APIs
The following code snippet illustrates the APIs for checking whether a user
has access to a specific business method. The oracle.adf.share.security.
authorization.MethodPermission instance used in this example refers to the
permission settings for the updateDeparment() method that we defined at the
beginning of this example.

//In application module implementation class

public void updateDeparment() {
 Permission permission = new MethodPermission
 ("model.service.HRServiceAppModuleImpl.updateDeparment",
 "invoke");
 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 boolean userHasPermission = securityCtx.
 hasPermission(permission);
 if(userHasPermission){
 //user is authorized to call this method

Securing Fusion Web Applications

[22]

 //Add your business logic here
 _doUpdate();
 }
}

Restricting data access using the virtual
private database
While talking about data security, it is interesting to know the features offered by
an Oracle database for meeting application security implementation. The virtual
private database (VPD) is an Oracle database security feature, enabling row level or
column level access control on database objects. At runtime, this VPD adds dynamic
conditions while executing the user supplied queries to prevent unauthorized access
of data.

If you use VPD for the purpose of securing your Fusion web application, most
of the settings are done at database level. To pass user context information
such as logged in username or enterprise name from the Java middle tier to the
database session, you can override the prepareSession(Session session)
method in the application module implementation class. This method will be
invoked when an application module instance is associated with a user session.
The prepareSession() method can have a custom stored procedure or other
appropriate routines to pass user context data to a database session.

A detailed discussion on VPD is outside the scope of this book. To
learn more about VPD refer to the topic Virtual Private Database which
is available online at http://www.oracle.com/technetwork/
database/security/index-088277.html.

Securing the user interface layer
Securing the UI layer simply means allowing users to see only what they have access
to. Enabling security in a view layer of an application involves the following tasks:

•	 Page authorization: This task does not display the page if the logged in user
does not have access to it.

•	 Field authorization: This disables or hides fields if the logged in user does
not have access to them

Chapter 14

[23]

•	 Input validation: This validates the data based on user privileges
•	 User action authorization: This disables or hides actionable components

in the UI if the logged in user does not have access to the underlying
business functionality

We have discussed how to authorize web pages under the topic Providing resource
grants in this chapter. In this section, we will examine commonly used security
expressions and APIs for the purpose of performing authorization checks within a
page. You will use the security EL expressions to hide or disable UI components in
a page based on the access rights of the user. While discussing security expressions,
we will discuss corresponding security APIs as well. The security APIs are used to
programmatically check the access rights in the business logic implementation.

Using the expression builder to add security
expressions to a user interface component
The JDeveloper IDE provides editor support for the purpose of adding security
expressions to UI components in a JSF page.

To add a security expression to a user interface component, perform the
following steps:

1.	 Open up the desired web page in the design editor and then select the
appropriate component in the design view.

2.	 Go to the Property Inspector window and click on the down-arrow icon to
the right-hand side of the property to which you want to add the expression
(for example, the disabled property for af:commandButton). Choose
Expression Builder from the context menu.

3.	 In the Expression Builder dialog, expand the ADF Bindings |
securityContext node. Choose the appropriate expression displayed under
the securityContext node. To know more about each expression, expand the
Description node at the bottom of the expression editor.

4.	 Click on OK to select the expression.

Securing Fusion Web Applications

[24]

The following screenshot displays the usage of the Expression Builder dialog for
building security expressions to check whether the current user belongs to the
admin role.

Commonly used ADF security expressions
and security APIs in the UI layer
The commonly used security expressions and corresponding ADF security APIs are
as follows:

•	 Accessing logged in username: The following EL expression can be used for
accessing the authenticated username: #{securityContext.userName}.
The following code snippet illustrates how to use the ADF security API for
the purpose of accessing an authenticated username:

SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
String loggedInUserName=securityCtx.getUserName();

Chapter 14

[25]

•	 Is the user authenticated: The following EL expression returns true if the
user is authenticated: #{securityContext.authenticated}.
The following is a code sample for the purpose of reading the authentication
status for the current user:
SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
Boolean isUserAutheticated = securityCtx.isAuthenticated();

•	 Is the user under a specific role: The following EL expression returns true
if the authenticated user is included in any of the roles specified as a comma
separated list: #{securityContext.userInRole['commaSeparatedRoleNam
es']}.
The following is a code sample to check if the user belongs to an it-admin
role. Note that there is no API which takes comma speared role names:
SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
boolean isUserInRole =securityCtx.isUserInRole(
"it-admin");

•	 Is the user under all roles: The following EL expression returns true if the
authenticated user is in all of the roles specified as a comma separated list:
#{securityContext.userInAllRoles['commaSeparatedRoleNames']}.
The following method illustrates how to use the ADF security API to
check if an authenticated user belongs to all roles passed as a comma
separated argument:

public boolean isUserInAllRoles(String commaSepartedRoles) {
 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 String[] assignedRoles = securityCtx.getUserRoles();

 String[] roles = commaSepartedRoles.split(",");
 List assignedRolesAsList = Arrays.asList(assignedRoles);
 for (String role : roles) {

 if (!assignedRolesAsList.contains(role)) {
 return false;
 }

 }
 return true;
}

Securing Fusion Web Applications

[26]

•	 If the user has been granted permission for specific action: The following
EL expression returns true if the authenticated user has been granted the
permission specified as argument: #{securityContext.userGrantedPermi
ssion['permission']}.
The value for permission in this EL is a string containing a
semicolon-separated concatenation of permissionClass =
qualifiedClassName;target = artifactName;action = actionName.
This EL essentially gathers the three pieces of information needed by Java
Platform Security (JPS) to perform a JAAS permission check, returning
a boolean value. Let us see a few examples using this expression to check
access rights for a user.
 In the following example we are checking if the logged in user has view
permission for dept-task-flow-definition: #{securityContext.us
erGrantedPermission['permissionClass=oracle.adf.controller.
security.TaskFlowPermission;target=/WEB-INF/dept-task-flow-
definition.xml#dept-task-flow-definition; action=view']}

The following code snippet illustrates the APIs for checking the task
flow permission:
TaskFlowId deptTaskFlowId = TaskFlowId.parse("/WEB-INF/dept-task-
flow-definition.xml#dept-ask-flow-definition");
ControllerContext controllerContext =
 ControllerContext.getInstance();
TaskFlowPermission taskFlowPermission=controllerContext.
getSecurity().
 getPermission(taskFlowId, TaskFlowPermission.VIEW_ACTION);
if(ADFContext.getCurrent().
 getSecurityContext().hasPermission(taskFlowPermission)){
 //User has access to task flow
 //Add your business logic here
}

The next example illustrates how you can use security EL to check whether
the user has been granted permission for invoking the updateDeparment()
method defined in the HRServiceAppModuleImpl class.
#{securityContext.userGrantedPermission['permissionClass=orac
le.adf.share.security.authorization.MethodPermission,target=
model.service.HRServiceAppModuleImpl.updateDeparment,action=in
voke']}

Chapter 14

[27]

ADF provides simplified security expressions for checking the view
permission on task flows and regions using securityContext.
taskflowViewable and securityContext.regionViewable
respectively. You really do not need to write lengthy expressions
using securityContext.userGrantedPermission for checking
view permissions on these resources. These simplified expressions are
discussed as follows.

•	 Task flow view permission: The following is the EL expression for checking
whether a user has view permission to the task flow: #{securityContext.
taskflowViewable['taskflow']}

The task flow in the previous EL expression is the WEB-INF node-qualified
name of the task flow being accessed. This simplified version of the
expression is {securityContext.userGrantedPermission['permissi
on']}, which presumes that the name of permissionClass to be used is
oracle.adf.controller.security.TaskFlowPermission and the action
to be used is view.
The following example illustrates the usage of EL to check the task flow view
permission for the logged in user:
#{securityContext.taskflowViewable['/WEB-INF/dept-task-flow-
definition.xml.xml#dept-task-flow-definition']}

The following code snippet illustrates the APIs for checking the view
permissions for a task flow for the logged in user:

TaskFlowId deptTaskFlowId = TaskFlowId.parse("/WEB-INF/dept-task-
flow-definition.xml#dept-ask-flow-definition");
ControllerContext controllerContext = ControllerContext.
getInstance();
if(controllerContext.
 getSecurity().isViewAuthorized(taskFlowId)){
 //User has access to task flow
 //Add your business logic here
}

•	 Region view permission: The following EL expression returns true if the
authenticated user has view access to the page definition file passed
as a parameter:
#{securityContext.regionViewable['pagedef']}

Securing Fusion Web Applications

[28]

The pagedef in this EL is the fully-qualified name of the page definition file
associated with the web page being accessed. This simplified EL version
presumes that the name of permissionClass to be used is oracle.adf.
share.security.authorization.RegionPermission and the action to be
used is view. The following is an example:
#{securityContext.regionViewable['com.packtpub.adfguide.ch14.
view.pageDefs.deptPageDef']}

The following example shows how to do this check programmatically:

RegionPermission perm = new RegionPermission(
 "com.packtpub.adfguide.ch14.view.pageDefs.deptPageDef",
 RegionPermission.VIEW_ACTION);
if(ADFContext.getCurrent().
 getSecurityContext().hasPermission(perm)){
 //User has access to region.
 //Add your business logic here
}

•	 Resource permission: The following EL expression returns true if the
authorized user is granted the custom resource permission:
#{securityContext.userGrantedResource['resource']}

The resource in this EL expression is a semicolon-separated concatenation
of resourceName=<name>;resourceType=<type>;action=<action>.
The following is an example for the securityContext.
userGrantedResource EL. This example returns true if the user is
granted with the update action on the ADFEntityRow resource:
#{securityContext.userGrantedResource['resourceName=DepartmentE
O;resourceType= ADFEntityRow;action=update']}

The following example will help you to understand the ADF security API for
the purpose of performing a resource permission check in your code:

String type = "ADFEntityRow";
String entityName = DepartmentEOImpl.
 getDefinitionObject().getName();
String action = "update";
SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
ResourcePermission resourcePermission = new
ResourcePermission(type, entityName, action);
boolean userHasPermission = securityCtx.hasPermission(resourcePerm
ission);
if (userHasPermission) {
 //user has required permission granted
 //business logic goes here
}

Chapter 14

[29]

•	 Accessing the enterprise name: The EL expression for accessing the
enterprise name for the logged in user is as follows: #{data.adfContext.
enterpriseName}.
The following is a code sample for reading the enterprise name:
ADFContext adfContext= ADFContext.getCurrent();
String enterpriseName = adfContext.getEnterpriseName();

Using ADF controller APIs to check user
permissions
You can use ADF controller APIs to check access rights on resources such as task
flows and views for a user.

•	 View level authorization check: The following EL expression returns true
if the authenticated user has been granted access to the view specified in
the expression:
#{controllerContext.security.activity['viewid'].viewAuthorized}

The following example returns true if the logged in user is granted
view access to DeptDetailsView: #{controllerContext.security.
activity['DeptDetailsView'].viewAuthorized}.
You can use this expression where you need to skip the rendering of links
that refer to a page which is not authorized to view by the current user.

•	 Task flow authorization check: The following EL expressions return true
if the current user has been granted access to the task flow specified in
the expression:

i.	 #{controllerContext.security.taskflow['taskflowid'].
viewAuthorized}

ii.	 #{controllerContext.security.outcome ['taskflowid'].
viewAuthorized}

Functionality wise this is the same as the expression #{securityContext.
taskflowViewable['taskflow']} that we discussed in the previous section.
An example using the controllerContext expression is as follows:

#{controllerContext.security.taskflow['/WEB-INF/dept-task-flow-
definition.xml'].viewAuthorized}

Securing Fusion Web Applications

[30]

EL expressions for checking user
permissions on an entity object
We have discussed how to enable security for an entity object in the section Securing
data update operations. You can use the following expressions in the JSF page to check
user permissions for the underlying entity object.

•	 Checking user permissions for entity objects: The following binding EL
returns true if the user has been granted privileges for performing specified
operations on the underlying entity object:
#{row.hints.allows.<operation>}

The <operation> expression used in the previous EL could be the read,
update, or removeCurrentRow operation that you set for the entity object.
The following example uses EL to disable a button component in a table if
the user is not allowed to update the underlying entity object:

<af:table value="#{bindings.EmployeesInDepartment.
collectionModel}" var="row" ...>
 <af:column headerText="Update Employee" id="c2">
 <af:commandButton text="Update" id="cb8" disabled="#{!row.hints.
allows.update}"/>
 </af:column>
 ...
</af:table>

The expression #{row.hints.allows.<operation>} is
evaluated only in the context of row collection. If you want to
check the entity permission outside the context of row collection,
you must use #{securityContext.userGrantedResource
['resource']} instead.

•	 Checking user permissions for an entity object attribute: The following
binding EL expression returns true if the user has been granted privileges
to perform specified operations on the underlying entity object attribute:
#{bindings.<attributeName>.hints.allows.<operation>}.

The following is an example:
<af:inputText value="#{bindings.DepartmentId.inputValue}"

 disabled="#{bindings.DepartmentId.hints.allows.update}">
</af:inputText>

Chapter 14

[31]

To check the attribute permission in the context of row collection, you must
use the following EL expression:

#{row.<attributeName>.hints.allows.<operation>}

Summary
In this chapter you learned how to use the JDeveloper IDE to declaratively secure
a Fusion web application. You also learned various security features offered by the
Oracle ADF security module to secure the view, bindings, and business services
layers of an application.

