
Securing Fusion Web
Applications

Security is an important part of any enterprise application. Security implementation
in an application decides who can access the application and what they can do once
they are logged in. This chapter describes how you can visually enable security in the
different layers of your Fusion web application. The following topics are discussed
in this chapter:

•	 Securing Fusion web applications
•	 Securing the business service layer
•	 Securing the view and model layer

Introduction
As you know, Oracle ADF is an end-to-end application framework built on top of the
Java EE stack. The Java Authentication and Authorization Services (JAAS) is a Java
security framework typically used for securing Java EE applications. Oracle fusion
middleware	simplifies	the	security	model	offered	by	Java	and	Java	EE	stack	and	
provides a portable, feature-rich enterprise level security solution through Oracle
Platform Security Services (OPSS).

The OPSS is set of portable security services built on top of Java and Java
EE stack abstracting the underlying security and identity management
details. To learn more about OPSS, refer to the topic Oracle Platform
Security Services available online at: http://www.oracle.com/
technetwork/middleware/id-mgmt/index-100381.html.

Securing Fusion Web Applications

[2]

Oracle ADF security leverages the OPSS services for authentication and
authorization of business users of the system. The ADF security framework
at a high level offers the following:

•	 Integration with JDeveloper IDE to provide visual and
declarative development

•	 Simplified	security	EL	expressions	which	can	be	used	in	the	web	pages	to	
control the access of UI elements

•	 End-to-end coverage and security of all layers of the application

The rest of the sections in this chapter will make you familiar you with the
techniques you can use to implement ADF security for your Fusion web application.

Securing Fusion web applications
The JDeveloper IDE provides visual and declarative support to secure your ADF
web application. It abstracts the underlying security implementation and frees
you	from	the	complexity	of	security	APIs.	In	this	section	you	will	learn	to	use	the	
JDeveloper design time features for securing a typical Fusion web application.

Configuring ADF security
In this section you will learn to enable authentication and authorization for your
Fusion web application. To enable security for a Fusion web application, perform
the following steps:

1. In the main menu, select the Application | Security | Configure ADF
Security menu item. While doing so, the IDE will display the Configure ADF
Security dialog.

2. In	the	first	screen	of	the	Configure ADF Security dialog, choose ADF
Authentication and Authorization and click on Next.

3. Select the web project which needs to be secured and then Authentication
Type	in	the	next	screen.	The	authentication	types	that	you	choose	decide	
the login form type for your application.

Chapter 14

[3]

The following are the authentication types displayed in this page:

 ° HTTP Basic Authentication: This uses the default browser
login dialog.

 ° HTTP Digest Authentication: When you use this option the browser
client encrypts the password before sending it to the server.

 ° HTTPS Client Authentication (public key certificate): This uses
public key certificates to perform client authentication over a secure
HTTP connection.

 ° Form-Based Client Authentication: When you select this option, the
IDE allows you to choose either of the following:

i. Choose to use the default login and error pages generated
by the IDE.

ii. Choose the custom login and error page option, which will
allow you to specify the custom login page you made.

For	this	example,	select	the	HTTP Basic Authentication type and click on
Next to continue.

4. Select No Automatic Grants in the Automatic Policy Grant screen. The No
Automatic Grants option locks down all the application resources unless you
explicitly	specify	access	to	them.	Click	on	Next.

5. In the authenticated Welcome screen, choose Redirect Upon Successful
Authentication	and	then	configure	the	welcome	page.	If	you	specify	the	
ADF Faces page, then make sure you added /faces at the beginning of the
URL.	For	example,	/faces/welcome.jspx.

6. Click on Finish to complete the wizard.

Securing Fusion Web Applications

[4]

ADF security artefacts
When you enable security for a Fusion application, the IDE updates (or creates
them	if	they	not	exist)	the	security	related	configuration	files	for	the	application,	
such as web.xml, adf-config.xml, weblogic.xml, jps-config.xml, cwallet.sso,
and jazn-data.xml.	Let	us	take	a	quick	look	these	files	and	understand	their	role	in	
managing security.

•	 web.xml: When you enable security, the IDE adds the following security
related	configurations	in	this	file:

i. Authentication servlet for enforcing secured access to the
system (oracle.adf.share.security.authentication.
AuthenticationServlet): When a request reaches the server,
this servlet intercepts the request and checks whether the user
has logged in to the system. If user is not logged in, then the
system challenges the user with a login form.

Chapter 14

[5]

ii. The JPS filter configuration (oracle.security.jps.ee.http.
JpsFilter): This filter is used for setting up the OPSS policy
provider.

•	 adf-config.xml:	This	file	stores	the	JaasSecurityContext entry which
contains	flags	for	enforcing	the	authentication	and	authorization	checks.

•	 weblogic.xml:	This	file	contains	mapping	between	the	valid	users,	security	
role and the OPSS user principal.

•	 jps-config.xml:	This	file	contains	metadata	definitions	for	security	services	
such as login modules, authentication providers, authorization policy
providers, and credential stores.

•	 jazn-data.xml:	This	file	contains	the	identity	store	and	policy	stores	that	you	
add while securing a Fusion web application.
The identity store includes business users added to the application, and
policy stores include resource types, permissions, application roles, and
policy details describing what roles can access which resources. The
identities are what authentication requests are done against.

•	 cwallet.sso:	This	file	encrypts	and	stores	the	user	credentials	used	in	
the application.

Once you enable security for an application, the steps that follow in securing the
application	are	to	define	application	roles,	define	users,	role-user	mapping,	and	
granting	appropriate	resource	permissions	for	roles.	These	are	explained	in	the	
coming sections.

Defining application roles and users
To	define	application	roles,	perform	the	following	steps:

1. Select Application | Security | Application Roles in the main menu. On
selecting this menu item, the IDE opens up jazn-data.xml in the overview
editor with the Application Roles tab selected.

2. To	define	new	application	roles,	click	on	the	green	plus	icon	in	the	Roles
panel and select the Add New Roles option from the drop-down menu.
Enter Name, Display Name, and Description for the new role. In the
Mappings tab, click on the green plus icon to add users and enterprise roles
to the newly created role.

Note	that	you	can	group	application	roles	under	the	existing	roles	to	simulate	the	
role hierarchy in an enterprise.

Securing Fusion Web Applications

[6]

Application roles versus enterprise roles
When	you	define	roles,	you	have	two	options.	You	can	define	them	either	as	
application roles or as enterprise roles. Application roles are local to an application
and	it	can	contain	only	users	and	roles	defined	in	the	application,	whereas	enterprise
roles	are	available	to	all	applications	deployed	in	the	domain.	You	will	use	these	
roles later while granting resource permissions.

Although ADF security allows you to grant resource permissions to users through
enterprise roles and application roles, as a best practice, is recommended to grant
permissions	directly	to	application	roles	alone	in	real-life	applications.	Later	you	can	
map users and enterprise roles to appropriate application roles. This approach gives
you	more	flexibility	in	terms	of	security	implementation.

Providing resource grants
In the previous sections we learned how to enable security in a Fusion web
application and also learned about application roles. In this section we will learn
how	to	configure	access	rights	for	each	role.	Access	rights	are	defined	using	security	
policies	which	define	roles	or	users	who	can	access	a	resource,	along	with	the	actions	
they can perform on it.

To provide resource grants in an ADF application, perform the following steps:

1. Select the Resource Grants tab in the overview editor of jazn-data.xml.
2. Select the appropriate Resource Type in the drop-down list. The resource

types listed are as follows: ADF Entity Object, ADF Entity Object Attribute,
ADF Method, Task Flow, Web Page, and Custom Resource Types.	You	can	
use the search icon in the Source Project	field	to	pick	up	the	appropriate	source	
project	to	look	up	the	resources	that	need	to	be	secured.	For	example,	if	you	
choose a web page as a resource type, the Resources table will list all the pages
from the web project that you selected as the source. Note that you can secure
only	web	pages	with	a	page	definition	file	in	the	Resource Grant screen.

3. You	can	use	the	Resource Grant screen to restrict the access of resources.
To specify grants, select the appropriate resource in the Resources table
and then click on the green plus icon in the Granted To panel header to
add appropriate grantees, such as application role, user, enterprise role,
and code source.

4. Once	you	have	defined	a	grantee,	the	next	step	would	be	to	specify	the	
authorized actions that the grantee can perform on the resource. The
following screenshot displays the Resource Grants editor window for
the	department	page.	In	this	example,	the	view	action	on	the	dept	page	is	
granted to all users belonging to standard-role.

Chapter 14

[7]

You	must	select	the	view	action	alone	while	granting	actions	on	a	web	page.	
The other actions listed in the editor for a web page such as customize, grant,
view, and personalize actions are for use by the Oracle Composer.

Using entitlement grants to aggregate
resources
The entitlement grant allows you to group resources and corresponding actions
into a single named security group that can be granted to application roles using
a	single	grant	statement.	This	simplifies	the	security	configuration.	For	example,	if	
your	application	has	many	task	flows	and	web	pages	that	are	accessible	to	different	
application roles with similar action permissions, then you can create a single
entitlement group with the appropriate resource grants and allowed actions on the
granted	resources.	Later	you	can	map	the	desired	application	roles	to	this	group	in	
one go.

To	define	the	entitlement	grant,	perform	the	following	steps:

1. Select the Entitlement Grants tab in the editor. Click on the green plus icon
to add the entitlement. Specify Name and Display Name.

2. To add member resources to this security group, click on the green plus icon
in the Member Resources panel header. Choose the desired resources in the
Select Resources pop up. Select the appropriate actions for each member
resource that you have added.

Securing Fusion Web Applications

[8]

3. To map application roles to the grantee list for an entitlement, open the
Grants tab and add application roles as appropriate.

4. You	can	click	on	the	Save icon displayed in the main toolbar to save all
changes that you made.

Securing the business service layer
The Oracle ADF security framework is very comprehensive and covers all layers
of the application. In this section you will see the features offered by ADF Business
Components for securing business data and business service methods.

Securing data update operations
ADF entity objects handle the posting of changes to the data source in a Fusion
web	application.	You	can	leverage	the	security	features	offered	by	entity	objects	to	
authorize all the data update operations on entity rows. Oracle ADF allows you to
authorize operations on an entity object at two levels:

•	 Entity object level: The entity level security settings are used to authorize
operations such as read, update, and remove on entity object rows

•	 Attribute level: The attribute level security settings are used to authorize
update on entity object attributes

To enable security for an entity object, open the desired entity object in the overview
editor. Select the General	tab	and	expand	the	Security section. The Security section
displays read, update, and removeCurrentRow operations for the entity object.
Select the appropriate operations that need to be enabled on the entity object.

To enable security at the attribute level of an entity object, select the desired attribute
in the overview editor of the entity object. Switch to the Security tab and choose the
update operation.

The	following	example	illustrates	the	permission	entry	added	for	the	read, update,
and removeCurrentRow operations on the DepartmentEO entity object:

Chapter 14

[9]

<Entity ...
 <Permission target="com.packtpub.adfguide.ch14.model.entity.
DepartmentEO" permissionClass="oracle.adf.share.security.
authorization.EntityPermission">
 <privilege-map
 operation="read"
 privilege="read"/>
 <privilege-map
 operation="update"
 privilege="update"/>
 <privilege-map
 operation="removeCurrentRow"
 privilege="delete"/>
 </Permission>
</Entity>

Once you have enabled the operations on an entity object, you can grant entity
permissions to application roles.

To grant entity permissions to application roles, perform the following steps:

1. Select the appropriate entity object in the Application panel.
2. Go to the structure window, right-click on the security enabled entity object

or entity attribute node, and choose Edit Authorization in the menu.
This is shown in the following screenshot:

Securing Fusion Web Applications

[10]

3. When you choose the Edit Authorization option, the IDE will display the
jazn-data.xml	file	in	the	overview	editor	with	the	Resource Grants tab
opened. Click on the Add Grant button displayed in the Granted To
column header and select the appropriate grantees. Select the
appropriate Actions that you want to grant.

4. Click on the Save icon in the main toolbar to save changes.

What happens at runtime?
At runtime when the user queries a view object that uses security-enabled entity
objects or when the user updates a security-enabled entity object row, the framework
will read the associated permission clauses for the underlying entity objects and
perform a security check before carrying out the requested action. Based on the
resource grant settings in the entity object, the framework will allow or disallow
the operation.

Defining custom resource types
Oracle	ADF	security	provides	many	features	out	of	the	box	for	securing	various	
application	resources.	However,	some	enterprises	may	have	specific	authorization	
policies which may call for special treatment while enabling security for business
applications. While working in such applications you may end up going beyond
the built-in features and creating custom resource permissions for authorizing
access to various application resources. In this section you will see how the ADF
framework	help	you	define	custom	permissions	and	use	it	to	ensure	authorized	
access of resources.

To	define	a	custom	resource	type,	perform	the	following	steps:

1. Locate	the	jazn-data.xml	file	under	the	META-INF folder in the Application
Resources panel.

2. Open the jazn-data.xml in the overview editor and select the Resource
Grants	tab.	Click	on	the	green	plus	icon	located	next	to	the	Resource Type
drop-down list.

3. In the Create Resource Type dialog, enter Name, Display Name, and
Description for the custom resource type. The IDE will pre-populate the
Matcher Class name to the oracle.security.jps.ResourcePermission
class. This is a generic permission class that represents the access rights to
resources of a particular type and allows the underlying policy providers to
make authorization decisions on the resources as appropriate.

Chapter 14

[11]

4. Click on the green plus icon displayed in the Actions panel (displayed at the
bottom of the Create Resource Type dialog) to add appropriate actions for
the resource type. Click on OK to save changes and dispose of the dialog.
Once	you	have	defined	the	resource	type,	you	can	map	the	resources	to	it	by	
performing the following steps.

1. Click on the green plus icon in the Resource panel window to map the
resources to the resource type. In the Create Resource dialog choose
Resource Type; specify Name, Display Name, and Description.

2. Click on OK to save changes.

You	can	use	the	Resource Grants tab in the overview editor for granting access of
resources	types	to	desired	roles.	The	following	section	is	an	example.

An example using a custom resource type for
controlling data updates
In	this	example	we	will	see	how	a	custom	resource	type	can	be	used	for	controlling	
updates	on	an	entity	row.	This	example	allows	updates	only	on	newly	created	
entity rows.

The	following	screenshot	displays	the	definition	for	the	ADFEntityRow resource
type	used	in	the	example.	ADFEntityRow supports create, delete, and update
actions which are displayed in the Actions section in the dialog:

Securing Fusion Web Applications

[12]

This	example	uses	ADFEntityRow to control operations on the DepartmentEO
entity object. DepartmentEO	is	used	in	this	example	just	to	keep	things	simple;	
you are free to use any entity object name that you want to secure. To complete the
security	settings	for	this	example	you	must	add	DepartmentEO as a resource to
the ADFEntityRow type and grant appropriate resource permissions to suitable
roles. The following screenshot displays the mapping of DepartmentEO to the
ADFEntityRow type with the update action granted to a standard role.

The basic infrastructural setup for the purpose of using a custom resource type for
checking access rights should be ready by now. The following part will show you
how to use this custom resource type to control updates on the DepartmentEO
entity object.

Generate a Java class for DepartmentEO and override the isAttributeUpdateable()
method. The ADF Business Component framework invokes
isAttributeUpdateable() in an oracle.jbo.server.EntityImpl instance before
updating	each	attribute.	This	example	overrides	the	isAttributeUpdateable()
method in DepartmentEOImpl to conditionally enable updates on attributes in the
DepartmentEO	entity	instance.	This	example	defaults	the	attribute	values	for	newly	
created entity rows, and allows the user with special rights to override the defaults
values. The algorithm used in this method is as follows:

1. It checks whether security is enabled for the attribute and if true continues
with	the	next	step.

2. Checks	if	the	current	row	is	new	and	if	found	true,	continues	with	the	next	
step.	This	method	will	take	the	default	execution	path	if	the	current	row	is	in	
the	unmodified	state.

Chapter 14

[13]

3. Checks if the current user has the ADFEntityRow resource permission
enabled with the update privilege. If all the previous conditions are met, then
return true to enable updates on this attribute.

//In entity object implementation class (DepartmentEOImpl)

DataSecurityProviderManager _mDataSecurityMgr = null;
/**
 * Checks if the attribute is updateable.
 */
@Override
public boolean isAttributeUpdateable(int index) {
 DBTransactionImpl dbtransaction = (DBTransactionImpl)this.
getDBTransaction();
 DataSecurityProvider provider = _getDataSecurityProvider();
 if (provider == null) {
 return super.isAttributeUpdateable(index);
 }
 EntityCache ec = getEntityCache();
 AttributeDefImpl attrDef = (AttributeDefImpl)ec.
 getAttributeDef(index);
 String key = attrDef.getName();
 BindingPermissionDef permDef = attrDef.getPermissionDef();
 String privToCheck = (permDef == null ? null :
 permDef.findPrivilege(PermissionHelper.UPDATE_ACTION));
 //Variable privToCheck is null if no security has been
 // enabled on the entity attribute.
 //Note that Security can be enabled by choosing the Edit
 //Security option on the attribute context menu in
 //the Structure Window
 if (privToCheck == null) {
 return super.isAttributeUpdateable(index);
 }
 //check if attribute is new (insert case)
 if (getPostState() == STATUS_NEW ||
 getPostState() == STATUS_INITIALIZED) {
 //build ResourcePermission
 //type = ADFEntityRow, Action = update
 String type = "ADFEntityRow";
 String entityName = this.getEntityDef().getName();
 String action = "update";

Securing Fusion Web Applications

[14]

 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 ResourcePermission resourcePermission = new
 ResourcePermission(type, entityName, action);
 boolean userHasPermission =
 securityCtx.hasPermission(resourcePermission);

 if (userHasPermission) {
 return true;
 }
 return false;
 }
 return super.isAttributeUpdateable(index);

}

//The following is helper method to get DataSecurityProvider
//Note that DBTransactionImpl:: getDataSecurityProvider() is //
package private, hence not used
DataSecurityProvider _getDataSecurityProvider() {
 if (_mDataSecurityMgr == null) {
 DBTransactionImpl dbtransaction =
 (DBTransactionImpl)this.getDBTransaction();
 _mDataSecurityMgr = new
 DataSecurityProviderManager(dbtransaction);
 }
 return _mDataSecurityMgr.getDataSecurityProvider();
}

Securing the data access layer
The	data	access	layer	in	an	application	provides	a	simplified	access	to	business	data	
stored in persistent storage. ADF view objects build the data access layer for a Fusion
web application. This section shows you how to enable authorization checks in the
data	access	layer	of	a	Fusion	web	application.	Let	us	see	the	features	provided	by	a	
view object to authorize each caller prior to returning the data requested by the client
so that users are only able to see their own data.

Chapter 14

[15]

Authorization check in view objects with secured
entity object usages
The ADF framework has built-in support to secure data rows returned by a view
object.	When	you	execute	a	view	object	backed	up	by	security-enabled	entity	object	
usages, it will invoke the oracle.jbo.DataSecurityProvider implementation
configured	in	adf-config.xml during the query preparation phase in order to
identify the WHERE	clause	fragment	that	needs	to	be	added	to	the	SQL	statement	for	
preventing unauthorized access to data rows. The default DataSecurityProvider
implementation used by the ADF framework is oracle.jbo.server.security.
JAASDataSecurityProviderImpl. If the authenticated user does not have read
permission for the entity usages in a view object, JAASDataSecurityProviderImpl
will append a dummy condition "1 = 2" to the WHERE clause of the query string
preventing unauthorized access of data rows. The generated SELECT clause will look
like the following:

SELECT <COLIMN_NAMES> FROM <TABLE_NAME> WHERE 1=2.

Referencing an authenticated username in the SQL
WHERE clause
A common use case across many business applications involves preventing a logged
in user viewing unauthorized business data. The target database table for such
applications may typically have a column to hold the username and you will use this
column	in	the	SQL	WHERE	clause	to	pull	up	the	records	for	the	specified	username.

To	filter	rows	returned	by	a	view	object	based	on	the	logged	in	username,	edit	the	
query in the view object, and add the WHERE clause with a bind variable name as in
the	following	example:

Where="EmployeeEO.NAME = :currentUserName".

Securing Fusion Web Applications

[16]

Define	the	bind	variable	currentUserName as shown in the following screenshot.
The	value	is	set	using	the	Groovy	expression	adf.context.securityContext.
userName which points to the logged in user principal. Mark Value Type as
Expression and select the Required option.

Note that if you use this bind variable in the view criteria, you must deselect the
Required	checkbox.

Using a custom criteria adapter implementation to
add an authorization check in a view object
The built-in support by the view object may be enough to secure the data read
operations in most of the scenarios. However sometimes you may want to go
beyond the declarative features and may want to add custom security clauses to the
query at runtime. This section discusses a generic solution for such use cases. This
example	defines	an	empty	view	criteria	on	the	view	object	and	overrides	the	default	
query	generation	logic	for	this	view	criteria	usage	to	build	an	appropriate	SQL	
WHERE	clause	fragment.	The	following	section	explains	this	solution	in	detail.

1. The	first	step	is	to	define	an	empty	view	criteria	on	the	view	object.	Make	
sure	you	specify	a	unique	name	for	the	view	criteria.	The	example	used	in	
this section names the dummy view criteria created for generating security
clauses as SecurityEnabledEmptyVC_. We will use this name in the
custom criteria adaptor class to identify the dummy view criteria
added in the view object.

Chapter 14

[17]

2. Once	you	define	the	view	criteria,	you	may	need	to	associate	it	with	
appropriate view object instances in the application module. To do this,
perform the following steps.

3. Open the application module in the overview editor and select the Data
Model tab.

4. Select the appropriate view object instance added to the application module
in the Data Model list, then click on Edit.

5. In the Edit View Instance window, shuttle the dummy view criteria that you
created to the Selected list.

6. The	next	step	is	to	build	a	custom	logic	for	generating	the	security	predicate	
when	you	execute	the	view	object	instance	with	the	special	view	criteria	
usage	that	we	defined	in	step	1.	This	is	explained	as	follows:
The view object component allows you to override the default query
generation implementation for the applied view criteria through a custom
oracle.jbo.CriteriaAdapter. We will use this approach to inject custom
security conditions in the query at runtime. If you need a quick brush up on
this topic, refer back to the topic Intercepting query generation for view criteria in
Chapter 5, Advanced Concepts on Entity Objects and View Objects.
The	following	is	an	example	that	uses	the	custom	oracle.jbo.
CriteriaAdapter implementation for generating security predicates
when	you	execute	a	view	object	instance	with	security	enabled	view	
criteria usage. This sample is kept simple to make the points clear. The
SecurityEnabledViewCriteriaAdapter implementation used in this
example	returns	the	WHERE clause fragment with a custom security predicate
as <EO_Aliase>.USER_NAME = '<current_user_name>' for view object
instances with SecurityEnabledEmptyVC_	usage.	You	can	use	a	similar	
concept	for	more	complex	security	checks	in	your	application.
public class SecurityEnabledViewCriteriaAdapter extends
CriteriaAdapterImpl implements CriteriaAdapter {

 //Special view criteria name defined for injecting
 // security clause
 private static String SECVCNAME =
 "SecurityEnabledEmptyVC_";

 public SecurityEnabledViewCriteriaAdapter() {
 super();
 }

 /**

Securing Fusion Web Applications

[18]

 * Generate a security predicate for the view
 * criteria(if conditions are met).
 * This example appends WHERE clause fragment
 * USER_NAME = '<surrent_username>' with the query
 * @param criteria a view criteria instance
 * @return a where clause fragment
 */
 public String getCriteriaClause(ViewCriteria criteria) {
 ViewObjectImpl vo = (ViewObjectImpl)criteria.
 getViewObject();
 if (isSecurityEnabled() && isSecureVC(criteria)) {
 String loggedInUser = ADFContext.getCurrent().
 getSecurityContext().getUserName();
 ViewDefImpl voDef = (ViewDefImpl)vo.getDef();
 String securityClause =
 voDef.getEntityUsages()[0].
 getEntityDef().getAliasName() +
 ".USER_NAME = '" + loggedInUser + "'";
 return securityClause;
 }
 return super.getCriteriaClause(criteria);
 }

 /**
 * Check if security is enabled for the application
 * @return
 */
 private boolean isSecurityEnabled() {
 SecurityContext secCtx = ADFContext.getCurrent().
 getSecurityContext();
 return secCtx.isAuthorizationEnabled();
 }

 /**
 * Check if the view criteris is meant for
 * generating security predicates
 * @param vc
 * @return
 */
 public static boolean isSecureVC(ViewCriteria vc) {
 return ((vc == null) ? false :
 (vc.getName() == null ? false :
 vc.getName().equalsIgnoreCase(SECVCNAME)));
 }

}

Chapter 14

[19]

To hook this custom security enabled CriteriaAdapter implementation into
a view object, override the getCriteriaAdapter() method in the desired
view object implementation class as shown in the following code:

//In view object implementation class
/**
 * Return a custom CriteriaAdapter implementation
 * to generate where clause for ViewCriteria.
 *
 * @return Custom CriteriaAdapter implementation if
 * desired, or null.
 */
@Override
public CriteriaAdapter getCriteriaAdapter() {
 return new SecurityEnabledViewCriteriaAdapter();
}

7. To add the security enabled marker view criteria
(SecurityEnabledEmptyVC_	,	defined	in	step	1)	to	a	view	object	instance,	
open the appropriate application module in the overview editor. In the
Data Model page, select the desired view object instance in the Data Model
selected list and click on the Edit button. In the Edit View Instance dialog,
shuttle the SecurityEnabledEmptyVC_ to the selected list. Alternatively,
you can call applyViewCriteria(…) on a view object to apply the view
criteria at runtime.
At	runtime,	when	you	execute	a	view	object	instance	with	view	criteria	
usage, the framework invokes the ViewObjectImpl::getCriteriaAda
pter() method to identify CriteriaAdapter used for generating the
WHERE	clause	fragment	for	the	view	criteria.	This	example	returns	the	
SecurityEnabledViewCriteriaAdapter implementation class as a criteria
adaptor. This class is responsible for generating a custom security predicate
for view objects with the view criteria usage SecurityEnabledEmptyVC_.

Securing business service methods
Preventing unauthorized access to business services is very critical for any enterprise
application.	ADF	security	offers	method	permission	definitions	for	the	purpose	
of addressing such scenarios. Method permissions check if a user has the right to
execute	a	method	defined	in	the	application.	ADF	security	allows	you	to	secure	
access	to	methods	defined	in	the	application	through	the	oracle.adf.share.
security.authorization.MethodPermission class.

Securing Fusion Web Applications

[20]

To	define	method	permissions	in	an	application,	perform	the	following	steps:

1. Open the jazn-data.xml in the overview editor and select the Resources
Grant tab.

2. Choose ADF Method as Resource Type. Add a new Resource value.
3. In the Create Resource	dialog,	specify	a	fully	qualified	class	name	along	with	

a method name as value for the Name	field.	For	example,	if	you	are	defining	
the method permission for updateDeparment()	defined	in	the	class	model.
service.HRServiceAppModuleImpl, the Name	field	is	specified	as	model.
service.HRServiceAppModuleImpl.updateDeparment.

4. Click on OK to save the changes and dispose of the dialog.

You	can	use	security	expressions	to	refer	to	the	method	permission	definitions	to	
control the display of action enabled UI components in a page. The ADF security
framework	also	exposes	APIs	for	checking	the	method	permission	which	can	be	used	
to	programmatically	check	the	user	privileges	in	the	code.	The	following	example	
illustrates the usage of method permissions in an application.

An example using method permissions
Let	us	see	how	method	permissions	can	be	used	in	an	EL	expression	to	control	the	
display property of a command component.

The	following	is	an	example	for	a	method	permission	definition	in	jazn-data.xml.
This	definition	describes	the	updateDeparment() method in the com.packtpub.
adfguide.service.HRServiceAppModuleImpl class:

<jazn-data ...>
...
 <resources>
 <resource>
 <name>
 model.service.HRServiceAppModuleImpl.updateDeparment
 </name>
 <display-name>updateDeparment</display-name>
 <description>updateDeparment</description>
 <type-name-ref>ADFMethodResourceType</type-name-ref>
 </resource>
 </resources>
</jazn-data>

Chapter 14

[21]

When you grant method permissions to an application role, the IDE will generate a
corresponding <permission> entry for the grantee in jazn-data.xml as follows:

<permission>
<class>
oracle.adf.share.security.authorization.MethodPermission
</class>
<name>
model.service.HRServiceAppModuleImpl.updateDeparment
</name>
<actions>invoke</actions>
</permission>

Using method permissions in an EL expression
The	following	component	tag	illustrates	how	the	method	permission	that	we	defined	
in	this	example	can	be	referenced	through	EL	to	enable	or	disable	components	based	
on the user rights for accessing the underlying operation:

<af:commandButton actionListener="#{bindings.updateDeparment.execute}"
 text="Update Department Details"
 disabled="#{!securityContext.userGrantedPermission['permissionCla
ss=oracle.adf.share.security.authorization.MethodPermission,target=
model.service.HRServiceAppModuleImpl.updateDeparment,action=invoke']}"
 id="cb6"/>

Using method permission APIs
The following code snippet illustrates the APIs for checking whether a user
has	access	to	a	specific	business	method.	The	oracle.adf.share.security.
authorization.MethodPermission	instance	used	in	this	example	refers	to	the	
permission settings for the updateDeparment()	method	that	we	defined	at	the	
beginning	of	this	example.

//In application module implementation class

public void updateDeparment() {
 Permission permission = new MethodPermission
 ("model.service.HRServiceAppModuleImpl.updateDeparment",
 "invoke");
 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 boolean userHasPermission = securityCtx.
 hasPermission(permission);
 if(userHasPermission){
 //user is authorized to call this method

Securing Fusion Web Applications

[22]

 //Add your business logic here
 _doUpdate();
 }
}

Restricting data access using the virtual
private database
While talking about data security, it is interesting to know the features offered by
an Oracle database for meeting application security implementation. The virtual
private database (VPD) is an Oracle database security feature, enabling row level or
column level access control on database objects. At runtime, this VPD adds dynamic
conditions	while	executing	the	user	supplied	queries	to	prevent	unauthorized	access	
of data.

If you use VPD for the purpose of securing your Fusion web application, most
of	the	settings	are	done	at	database	level.	To	pass	user	context	information	
such as logged in username or enterprise name from the Java middle tier to the
database session, you can override the prepareSession(Session session)
method in the application module implementation class. This method will be
invoked when an application module instance is associated with a user session.
The prepareSession() method can have a custom stored procedure or other
appropriate	routines	to	pass	user	context	data	to	a	database	session.

A detailed discussion on VPD is outside the scope of this book. To
learn more about VPD refer to the topic Virtual Private Database which
is available online at http://www.oracle.com/technetwork/
database/security/index-088277.html.

Securing the user interface layer
Securing the UI layer simply means allowing users to see only what they have access
to. Enabling security in a view layer of an application involves the following tasks:

•	 Page authorization: This task does not display the page if the logged in user
does not have access to it.

•	 Field authorization:	This	disables	or	hides	fields	if	the	logged	in	user	does	
not have access to them

Chapter 14

[23]

•	 Input validation: This validates the data based on user privileges
•	 User action authorization: This disables or hides actionable components

in the UI if the logged in user does not have access to the underlying
business functionality

We have discussed how to authorize web pages under the topic Providing resource
grants	in	this	chapter.	In	this	section,	we	will	examine	commonly	used	security	
expressions	and	APIs	for	the	purpose	of	performing	authorization	checks	within	a	
page.	You	will	use	the	security	EL	expressions	to	hide	or	disable	UI	components	in	
a	page	based	on	the	access	rights	of	the	user.	While	discussing	security	expressions,	
we will discuss corresponding security APIs as well. The security APIs are used to
programmatically check the access rights in the business logic implementation.

Using the expression builder to add security
expressions to a user interface component
The JDeveloper IDE provides editor support for the purpose of adding security
expressions	to	UI	components	in	a	JSF	page.

To	add	a	security	expression	to	a	user	interface	component,	perform	the	
following steps:

1. Open up the desired web page in the design editor and then select the
appropriate component in the design view.

2. Go to the Property Inspector window and click on the down-arrow icon to
the	right-hand	side	of	the	property	to	which	you	want	to	add	the	expression	
(for	example,	the	disabled property for af:commandButton). Choose
Expression Builder	from	the	context	menu.

3. In the Expression Builder	dialog,	expand	the	ADF Bindings |
securityContext	node.	Choose	the	appropriate	expression	displayed	under	
the securityContext	node.	To	know	more	about	each	expression,	expand	the	
Description	node	at	the	bottom	of	the	expression	editor.

4. Click on OK	to	select	the	expression.

Securing Fusion Web Applications

[24]

The following screenshot displays the usage of the Expression Builder dialog for
building	security	expressions	to	check	whether	the	current	user	belongs	to	the	
admin role.

Commonly used ADF security expressions
and security APIs in the UI layer
The	commonly	used	security	expressions	and	corresponding	ADF	security	APIs	are	
as follows:

•	 Accessing logged in username:	The	following	EL	expression	can	be	used	for	
accessing the authenticated username: #{securityContext.userName}.
The following code snippet illustrates how to use the ADF security API for
the purpose of accessing an authenticated username:

SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
String loggedInUserName=securityCtx.getUserName();

Chapter 14

[25]

•	 Is the user authenticated:	The	following	EL	expression	returns	true	if	the	
user is authenticated: #{securityContext.authenticated}.
The following is a code sample for the purpose of reading the authentication
status for the current user:
SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
Boolean isUserAutheticated = securityCtx.isAuthenticated();

•	 Is the user under a specific role:	The	following	EL	expression	returns	true	
if	the	authenticated	user	is	included	in	any	of	the	roles	specified	as	a	comma	
separated list: #{securityContext.userInRole['commaSeparatedRoleNam
es']}.
The following is a code sample to check if the user belongs to an it-admin
role. Note that there is no API which takes comma speared role names:
SecurityContext securityCtx = ADFContext.getCurrent().
getSecurityContext();
boolean isUserInRole =securityCtx.isUserInRole(
"it-admin");

•	 Is the user under all roles:	The	following	EL	expression	returns	true	if	the	
authenticated	user	is	in	all	of	the	roles	specified	as	a	comma	separated	list:	
#{securityContext.userInAllRoles['commaSeparatedRoleNames']}.
The following method illustrates how to use the ADF security API to
check if an authenticated user belongs to all roles passed as a comma
separated argument:

public boolean isUserInAllRoles(String commaSepartedRoles) {
 SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
 String[] assignedRoles = securityCtx.getUserRoles();

 String[] roles = commaSepartedRoles.split(",");
 List assignedRolesAsList = Arrays.asList(assignedRoles);
 for (String role : roles) {

 if (!assignedRolesAsList.contains(role)) {
 return false;
 }

 }
 return true;
}

Securing Fusion Web Applications

[26]

•	 If the user has been granted permission for specific action: The following
EL	expression	returns	true	if	the	authenticated	user	has	been	granted	the	
permission	specified	as	argument:	#{securityContext.userGrantedPermi
ssion['permission']}.
The value for permission	in	this	EL	is	a	string	containing	a	
semicolon-separated concatenation of permissionClass =
qualifiedClassName;target = artifactName;action = actionName.
This	EL	essentially	gathers	the	three	pieces	of	information	needed	by	Java
Platform Security (JPS) to perform a JAAS permission check, returning
a	boolean	value.	Let	us	see	a	few	examples	using	this	expression	to	check	
access rights for a user.
	In	the	following	example	we	are	checking	if	the	logged	in	user	has	view	
permission for dept-task-flow-definition: #{securityContext.us
erGrantedPermission['permissionClass=oracle.adf.controller.
security.TaskFlowPermission;target=/WEB-INF/dept-task-flow-
definition.xml#dept-task-flow-definition; action=view']}

The following code snippet illustrates the APIs for checking the task
flow	permission:
TaskFlowId deptTaskFlowId = TaskFlowId.parse("/WEB-INF/dept-task-
flow-definition.xml#dept-ask-flow-definition");
ControllerContext controllerContext =
 ControllerContext.getInstance();
TaskFlowPermission taskFlowPermission=controllerContext.
getSecurity().
 getPermission(taskFlowId, TaskFlowPermission.VIEW_ACTION);
if(ADFContext.getCurrent().
 getSecurityContext().hasPermission(taskFlowPermission)){
 //User has access to task flow
 //Add your business logic here
}

The	next	example	illustrates	how	you	can	use	security	EL	to	check	whether	
the user has been granted permission for invoking the updateDeparment()
method	defined	in	the	HRServiceAppModuleImpl class.
#{securityContext.userGrantedPermission['permissionClass=orac
le.adf.share.security.authorization.MethodPermission,target=
model.service.HRServiceAppModuleImpl.updateDeparment,action=in
voke']}

Chapter 14

[27]

ADF	provides	simplified	security	expressions	for	checking	the	view
permission	on	task	flows	and	regions	using	securityContext.
taskflowViewable and securityContext.regionViewable
respectively.	You	really	do	not	need	to	write	lengthy	expressions	
using securityContext.userGrantedPermission for checking
view	permissions	on	these	resources.	These	simplified	expressions	are	
discussed as follows.

•	 Task flow view permission:	The	following	is	the	EL	expression	for	checking	
whether	a	user	has	view	permission	to	the	task	flow:	#{securityContext.
taskflowViewable['taskflow']}

The	task	flow	in	the	previous	EL	expression	is	the	WEB-INF	node-qualified	
name	of	the	task	flow	being	accessed.	This	simplified	version	of	the	
expression	is	{securityContext.userGrantedPermission['permissi
on']}, which presumes that the name of permissionClass to be used is
oracle.adf.controller.security.TaskFlowPermission and the action
to be used is view.
The	following	example	illustrates	the	usage	of	EL	to	check	the	task	flow	view	
permission for the logged in user:
#{securityContext.taskflowViewable['/WEB-INF/dept-task-flow-
definition.xml.xml#dept-task-flow-definition']}

The following code snippet illustrates the APIs for checking the view
permissions	for	a	task	flow	for	the	logged	in	user:

TaskFlowId deptTaskFlowId = TaskFlowId.parse("/WEB-INF/dept-task-
flow-definition.xml#dept-ask-flow-definition");
ControllerContext controllerContext = ControllerContext.
getInstance();
if(controllerContext.
 getSecurity().isViewAuthorized(taskFlowId)){
 //User has access to task flow
 //Add your business logic here
}

•	 Region view permission:	The	following	EL	expression	returns	true	if	the	
authenticated	user	has	view	access	to	the	page	definition	file	passed	
as a parameter:
#{securityContext.regionViewable['pagedef']}

Securing Fusion Web Applications

[28]

The pagedef	in	this	EL	is	the	fully-qualified	name	of	the	page	definition	file	
associated	with	the	web	page	being	accessed.	This	simplified	EL	version	
presumes that the name of permissionClass to be used is oracle.adf.
share.security.authorization.RegionPermission and the action to be
used	is	view.	The	following	is	an	example:
#{securityContext.regionViewable['com.packtpub.adfguide.ch14.
view.pageDefs.deptPageDef']}

The	following	example	shows	how	to	do	this	check	programmatically:

RegionPermission perm = new RegionPermission(
 "com.packtpub.adfguide.ch14.view.pageDefs.deptPageDef",
 RegionPermission.VIEW_ACTION);
if(ADFContext.getCurrent().
 getSecurityContext().hasPermission(perm)){
 //User has access to region.
 //Add your business logic here
}

•	 Resource permission:	The	following	EL	expression	returns	true	if	the	
authorized user is granted the custom resource permission:
#{securityContext.userGrantedResource['resource']}

The resource	in	this	EL	expression	is	a	semicolon-separated	concatenation	
of resourceName=<name>;resourceType=<type>;action=<action>.
The	following	is	an	example	for	the	securityContext.
userGrantedResource	EL.	This	example	returns	true	if	the	user	is	
granted with the update action on the ADFEntityRow resource:
#{securityContext.userGrantedResource['resourceName=DepartmentE
O;resourceType= ADFEntityRow;action=update']}

The	following	example	will	help	you	to	understand	the	ADF	security	API	for	
the purpose of performing a resource permission check in your code:

String type = "ADFEntityRow";
String entityName = DepartmentEOImpl.
 getDefinitionObject().getName();
String action = "update";
SecurityContext securityCtx = ADFContext.getCurrent().
 getSecurityContext();
ResourcePermission resourcePermission = new
ResourcePermission(type, entityName, action);
boolean userHasPermission = securityCtx.hasPermission(resourcePerm
ission);
if (userHasPermission) {
 //user has required permission granted
 //business logic goes here
}

Chapter 14

[29]

•	 Accessing the enterprise name:	The	EL	expression	for	accessing	the	
enterprise name for the logged in user is as follows: #{data.adfContext.
enterpriseName}.
The following is a code sample for reading the enterprise name:
ADFContext adfContext= ADFContext.getCurrent();
String enterpriseName = adfContext.getEnterpriseName();

Using ADF controller APIs to check user
permissions
You	can	use	ADF	controller	APIs	to	check	access	rights	on	resources	such	as	task	
flows	and	views	for	a	user.

•	 View level authorization check:	The	following	EL	expression	returns	true	
if	the	authenticated	user	has	been	granted	access	to	the	view	specified	in	
the	expression:
#{controllerContext.security.activity['viewid'].viewAuthorized}

The	following	example	returns	true	if	the	logged	in	user	is	granted	
view access to DeptDetailsView: #{controllerContext.security.
activity['DeptDetailsView'].viewAuthorized}.
You	can	use	this	expression	where	you	need	to	skip	the	rendering	of	links	
that refer to a page which is not authorized to view by the current user.

•	 Task flow authorization check:	The	following	EL	expressions	return	true	
if	the	current	user	has	been	granted	access	to	the	task	flow	specified	in	
the	expression:

i. #{controllerContext.security.taskflow['taskflowid'].
viewAuthorized}

ii. #{controllerContext.security.outcome ['taskflowid'].
viewAuthorized}

Functionality	wise	this	is	the	same	as	the	expression	#{securityContext.
taskflowViewable['taskflow']} that we discussed in the previous section.
An	example	using	the	controllerContext	expression	is	as	follows:

#{controllerContext.security.taskflow['/WEB-INF/dept-task-flow-
definition.xml'].viewAuthorized}

Securing Fusion Web Applications

[30]

EL expressions for checking user
permissions on an entity object
We have discussed how to enable security for an entity object in the section Securing
data update operations.	You	can	use	the	following	expressions	in	the	JSF	page	to	check	
user permissions for the underlying entity object.

•	 Checking user permissions for entity objects:		The	following	binding	EL	
returns	true	if	the	user	has	been	granted	privileges	for	performing	specified	
operations on the underlying entity object:
#{row.hints.allows.<operation>}

The <operation>	expression	used	in	the	previous	EL	could	be	the	read,
update, or removeCurrentRow operation that you set for the entity object.
The	following	example	uses	EL	to	disable	a	button	component	in	a	table	if	
the user is not allowed to update the underlying entity object:

<af:table value="#{bindings.EmployeesInDepartment.
collectionModel}" var="row" ...>
 <af:column headerText="Update Employee" id="c2">
 <af:commandButton text="Update" id="cb8" disabled="#{!row.hints.
allows.update}"/>
 </af:column>
 ...
</af:table>

The	expression	#{row.hints.allows.<operation>} is
evaluated	only	in	the	context	of	row	collection.	If	you	want	to	
check	the	entity	permission	outside	the	context	of	row	collection,	
you must use #{securityContext.userGrantedResource
['resource']} instead.

•	 Checking user permissions for an entity object attribute: The following
binding	EL	expression	returns	true	if	the	user	has	been	granted	privileges	
to	perform	specified	operations	on	the	underlying	entity	object	attribute:	
#{bindings.<attributeName>.hints.allows.<operation>}.

The	following	is	an	example:
<af:inputText value="#{bindings.DepartmentId.inputValue}"

 disabled="#{bindings.DepartmentId.hints.allows.update}">
</af:inputText>

Chapter 14

[31]

To	check	the	attribute	permission	in	the	context	of	row	collection,	you	must	
use	the	following	EL	expression:

#{row.<attributeName>.hints.allows.<operation>}

Summary
In this chapter you learned how to use the JDeveloper IDE to declaratively secure
a	Fusion	web	application.	You	also	learned	various	security	features	offered	by	the	
Oracle ADF security module to secure the view, bindings, and business services
layers of an application.

