
Building Business Services
with EJB

So far our discussions have been centered on the usage of ADF Business
Components (ADF BC) and building a user interface for ADF BC-based business
services. In this chapter, you will learn how Oracle ADF will helps you to
declaratively build user interfaces for Enterprise Java Beans (EJB) based services.

Following topics will be discussed in this chapter:

•	 The architecture of a Fusion web application, using EJB as a business service
•	 Generating a business service layer by using EJB
•	 Exposing an EJB service through data control
•	 Building a data bound edit page
•	 Oracle ADF binding architecture for EJB
•	 How does ADF Model data binding work in the Java EE application?
•	 Customizing error handling for the EJB services

Introduction
The core Java Enterprise Edition (Java EE) technology stack has been improved
considerably in the recent past. The business service development has become much
easier with annotations, resource injection, EJB 3.x, and Java Persistence API (JPA).
However, if you take a closer look at the implementations of a Java EE application,
you may still see a large amount of repetitive code in different layers. In the next
sections, you will learn the offerings from the ADF framework and JDeveloper IDE,
for declaratively building a fully functional UI for EJB services without writing even
a single line of glue code.

Architecture of a Fusion web application,
using EJB as a business service
Oracle ADF, along with JDeveloper IDE, provides a visual and declarative UI
development experience for the business services built by using EJB. This eases your
job as a developer by freeing you from the complexity of the underlying technology
stack used for building business services. Before we dig into the details of offerings
from Oracle ADF for building an EJB-based application, let us see what makes Oracle
ADF	flexible	enough	to	plug	in	different	technologies.

We will start with architecture of an ADF web application by using EJB.
The following diagram depicts the basic architecture for such application:

In fact, architecture-wise, you may not see many differences between an ADF BC
application and an EJB application. The view layer and controller remain the same
between both the implementations. As you see in the diagram, the view layer is
bound to EJB services through the ADF Model. In other words, the ADF Model
decouples the view layer from the business service implementation. The advantage
of this loose architecture is that it abstracts the technology used for building a
business service from the UI layer and provides consistent development experience
for UI developers across various business service implementations.

The ADF Model layer plays a very important role in keeping the UI layer neutral to
the underlying business service implementation. The following diagram illustrates
how the ADF Model glues the view layer with business services:

The ADF Model implementation is split into two parts, as follows:

•	 ADF bindings: This layer provides a declarative data binding facility
abstracting the data returned by the business services and method
definitions.	This	provides	a	generic	way	to	bind	the	view	layer	to	the	
business services declaratively.

•	 Data control: The ADF data control acts as a smarter proxy for your
business service layer. This layer abstracts the implementation technology
of a business service by using standard metadata interfaces.

The separation of the ADF Model into two parts makes the binding framework more
extensible and reusable. ADF offers many data controls out of the box to support
various technologies such as ADF Business Components, EJB, web service, Java
Management Extensions (JMX), and Plain Old Java Object (POJO).

In the next section, we will see how JDeveloper and ADF binding eases the UI
development effort when the application uses the EJB services.

A quick look at the building blocks of an EJB
model project
The following diagram displays the building blocks of a typical EJB-based business
logic built by using the JDeveloper IDE:

SessionBean / Java Class
Session Facade/
Service Layer

Data Access
Layer

Data source

JPA Entity Classes Entity Manager

Let us take a quick look at the core components of the EJB model project:

•	 Session bean: The session bean forms the service layer for an EJB-based
business service implementation. There are two types of session bean—
stateless and stateful. A stateless session bean does not maintain the state
for	a	specific	client,	whereas	a	stateful	bean	maintains	the	a	state	until	the	
client	finishes	using	it.

•	 JPA entities: The JPA entities allow data management without wiring down
SQL or JDBC. You can consider an entity class as a table in a relational
database, and an entity instance as a row in that table.

•	 Entity manager: The entity manager manages the entities in an application.
The	entity	classes	managed	by	an	entity	manager	are	specified	through	a	
persistence	unit	(configured	using	persistence.xml). It is the persistence
unit that stores information about the underlying data store (database) to
be used by the entity manager.

Building user interfaces for EJB
The ADF binding layer for EJB bridges the gap between the UI and business service
layer, and provides a visual and declarative UI development experience for EJB
developers. In this section you will learn the following:

•	 Using JDeveloper IDE to build EJB business services
•	 Visually building UI for EJB business services

Generating the business service layer by
using EJB
You might have used EJB for building applications in the past. If you are an
experienced Java EE developer, in this section you will not learn anything new from
the	Java	EE	stack.	However,	you	will	definitely	see	how	JDeveloper	accelerates	the	
pace of the Java EE application development.

If	you	are	starting	from	scratch,	first	you	may	need	to	build	a	Fusion	web	
application, which can be extended to hold EJB services later. Note that you are
not	limited	to	any	specific	application	template	for	using	an	EJB	model.	You	can	
choose any template that meets your use casily. You can also add required
libraries as and when required.

If you have an application ready and you want to add EJB services to it, open the
application in JDeveloper.

To add an EJB project to an existing application, perform the following steps:

1. Choose File | New from the main menu toolbar.

2. In the New Gallery window, click on the All Features tab. Expand the
General node and select Projects | EJB Project. Click on OK to continue.
This is shown in the following screenshot:

3. In the Create EJB Project window, specify the project name and directory,
and click on Next to continue.

4. In the Project Java Settings screen, specify the default package for the project
and click on Next.

5. In the Configure EJB Settings section, specify EJB Version and its details.
Mostly you may leave the default values set by the IDE in the Create EJB
Project window as they are, unless you really want to override
the settings.

6. Click on Finish to generate the model project template.

Generating entities from the database tables
Once you have created a template for the EJB model project, you can start adding
model components to the project. To add entities from the database tables, follow
these steps:

1. Right-click on the model project and select New.
2. In the New Gallery window, expand Business Tier, and select Entities |

Entities from Tables.
3. In the Create Entities from Tables window, optionally override the

persistence unit created by JDeveloper in the Persistence Unit screen. Click
on Next to continue.

4. In the Type of Connection screen, select Online Database Connection, and
click on Next.

5. In the Database Connection Details screen, create a new database
connection. Alternatively, you can select an existing connection from the
Connection drop-down list. Click on Next to continue.

6. In the Select Tables screen, click on the Query button to list the tables from
the database. Select the desired tables for generating entities by shuttling
them to the right-hand side list. Click on Next to continue.

7. In the General Options screen, specify Package Name and Entity Class
Options as appropriate, and click on Next.

8. In the Specify Entity Details screen, optionally modify Entity Details
populated by the IDE for each table displayed in the Table Name drop-down
list. Click on Next to continue. Alternatively, you can click on the Finish
button to complete the entity creation, accepting the default values set by
the IDE.

9. If you decide to continue with the wizard by clicking on Next in the last step,
IDE will display the Relationships screen. In the Relationships screen, you
can pick up each entry in the Potential Relationships list and, if needed,
override	the	default	values	set	for	the	accessor	filed	(getter	methods)	names	
in source and destination entity objects.

10. Click on Finish	to	finish	generating	entities.

Building a service layer for the EJB model
Once the entities are added to a project, the next step is to expose the business
functionalities through the appropriate service interface (session facade) to be used
by a client. You can either use a session bean facade or Java facade to generate a
service layer.

Generating a session bean service facade
To generate a session bean facade for the EJB model project, follow these steps:

1. Right-click on the EJB model project and select New | New Gallery.
2. In the New Gallery window, expand Business Tier and select EJB |

Session Bean in the dialog.
3. In the Create Session Bean dialog, enter EJB Name and specify Session

Type as Stateless and Transaction Type as Container. Select the appropriate
Persistence Unit. This step is displayed in the following screenshot. Click on
Next to continue the wizard.

4. In the Session Facade screen, select the core façade methods and the CRUD
service methods for each entity. Click on Next to continue. Alternatively, you
can click on Finish to complete the creation of the session bean, accepting the
default settings for the bean.

5. In the Class Definition screen, enter the bean class and directory. Click on
Next to continue.

6. In the Interface screen, select how you want to expose the service to the
client. Choose Remote Interface to expose the services to be used by a remote
client. Then, choose Local Interface in all other cases.

7. Click on Finish to generate the session bean facade.

Generating a Java service facade
As mentioned earlier, session bean is not the only option to generate service layer
for the JPA model. If you don't want to use EJB in your application, use the Java
Service Facade option. To generate a Java service façade for the JPA entities, follow
these steps:

1. Right-click on the EJB model project and select New | New Gallery.
2. In the New Gallery window, select EJB in the Business Tier section and then

select the Java Service Facade item.
3. In the Create Java Service Class dialog, enter the Java service class name

in the Service Class Name section. Then, select Client Project, where you
want	the	IDE	to	generate	the	source	file	for	the	Java	service	facade.	Then,	
choose Persistence Type for the JPA model as JPA or Toplink. Then, choose
Transactional Options as Auto Commit or Application Managed. This is
shown in the following screenshot:

You are required to specify Persistence Unit for the javax.persistence.
EntityManager in this screen. You can either specify an existing persistence
unit name from the project or opt for creating a new persistence unit in the
next screen. Click on Next to continue the wizard.

4. If you have opted to create a new persistence unit in the previous step, then
the next screen would be the Create Persistence Unit screen where you can
enter the persistence unit name and specify JDBC connection. Click on Next
to continue.

5. In the Java Service Facade Methods screen, select the methods that you
want to expose to the client. Click on Finish to generate data control.

If you are a beginner or not familiar with the Java EE and JPA
programming model, the options that you see in the Create Service
wizard may confuse you. In reality, you do not need to worry much
about	these	configuration	options.	Mostly	the	default	values	populated	
by the IDE in the Create Java Service Class wizard screen work for
you, so that you really don't need to bother overriding these values
while generating the service layer.

Exposing an EJB service through data control
Once	you	have	finish	building	the	EJB	services,	the	next	step	is	to	bind	the	services	
with the UI layer by using ADF binding features. ADF uses data control to decouple
bindings in the UI layer from business service implementation. To generate
data control for accessing services exposed in a session bean, right-click on the
appropriate session bean implementation class in the application navigator and
choose Create Data Control in the context menu. In Choose EJB Interface, select
Local and click on OK.

What happens when you generate data control for a
session bean
When you generate data control for a session bean implementation, JDeveloper
IDE generates a DataControls.dcx	file	in	the	same	folder	where	the	session	bean	
resides. The .dcx	file	records	metadata	for	invoking	service	methods	defined	in	
a	session	bean	from	a	client.	A	typical	data	control	descriptor	file	for	an	EJB	will	
contain an <AdapterDataControl> entry describing the data control and the target
bean	definition.	The	following	is	an	example	for	a	data	control	descriptor	for	the	
HRServiceSessionEJB bean:

<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
version="11.1.2.60.81" id="DataControls"
Package="com.packtpub.adfguide.ch12.model.ejb">
 <AdapterDataControl id="HRServiceSessionEJBLocal"
 FactoryClass=
 "oracle.adf.model.adapter.DataControlFactoryImpl"
 ImplDef=
 "oracle.adfinternal.model.adapter.ejb.EjbDCDefinition"
 SupportsTransactions="false"
 SupportsSortCollection="true" SupportsResetState="false"
 SupportsRangesize="false"
 SupportsFindMode="false" SupportsUpdates="true"
 Definition=
 "com.packtpub.adfguide.ch12.model.ejb.HRSessionEJBLocal"
 BeanClass=
 "com.packtpub.adfguide.ch12.model.ejb.HRSessionEJBLocal"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol">
 <CreatableTypes>
 <TypeInfo FullName=
 "com.packtpub.adfguide.ch12.model.ejb.Employees"/>
 <TypeInfo FullName=
 "com.packtpub.adfguide.ch12.model.ejb.Departments"/>
 </CreatableTypes>
 <Source>
 <ejb-definition ejb-version="3.0"
 ejb-name="HRServiceSessionEJB"
 ejb-type="Session"
 ejb-business-interface=
 "com.packtpub.adfguide.ch12.model.ejb.HRSessionEJBLocal"
 ejb-interface-type="local"
 initial-context-factory=
 "weblogic.jndi.WLInitialContextFactory"
 DataControlHandler=
 "oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler"
 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>
 </Source>
 </AdapterDataControl>
</DataControlConfigs>

Once	you	have	finish	building	the	data	control	for	a	session	bean,	the	data	control	
pallet will display the business services and data collection exposed by the session
bean implementations. For example, consider the HRSessionEJBBean class shown in
the following screenshot:

When you generate the data control for HRSessionEJBBean, the Data Controls
panel	will	expose	the	business	service	methods	and	data	collections	defined	in	
HRSessionEJBBean as follows:

The data control generated for the session bean allows you to declaratively create a
UI by dropping appropriate items on to the page.

A closer look at the Data Controls panel
The Data Controls panel exposes the business service methods and data collections
defined	in	the	bean	implementation	for	building	a	data	bound	UI.	The	Data Controls
panel displays the following items:

•	 Data collection: The data control tree displays the data collection retuned by
the getter methods as data collection nodes. If an entity in the data collection
contains a relation to another entity, the data control tree will display the
detailed data collection nested under its master data collection node.

•	 Named criteria: The Named Criteria node under the data collection represents
a declarative query model, which can be used for building a search form.

•	 Business service methods:	This	represents	custom	business	methods	defined	
in the bean.

•	 Built-in operations: The Operations node under the data collection displays
the built-in operations that are provided by the framework.

Let us take an example to understand the items exposed by the Data Controls panel.
The following screenshot displays the data control generated for HRSessionEJB:

In the preceding screenshot, the Data Controls panel displays two data collections
departmentFindAll and employeesFindAll. If you are curious to know how IDE
generates these data collections, here are the details.

When you create a data control for a bean, the Data Controls panel displays the
getter (accessor) methods, returning collection in the bean as data collection. If
the method in the bean, which returns the collection takes a parameter, the Data
Controls panel displays it as a method. The methods in the data control can be
bound to the command components on the UI.

The data control offers declarative means to manipulate elements in the collection
when used in the UI. Under each data collection node in the Data Controls panel,
you can see the Operation node that contains built-in operations for navigation over
collection and operations for basic data manipulations such as Create, Delete, and
Execute. These operations can be dropped as action components on the UI.

Under the data collection node in the Data Controls panel, you can see a Named
Criteria node. The named criteria represents the declarative query model, which can
be dropped as a search component in the UI. This node will contain an All Queriable
Attributes criteria by default and additional criteria that you add explicitly for the
entity present in the collection.

Generating the data control structure XML file
for the bean in the data collection
When you create a data control for a bean that returns a collection, by default, the
attributes listed under the data collection and their properties are derived from the
entity Java class present in the model project. The ADF framework allows you to
optionally override the default properties for each attribute present in the entity by
generating	a	structure	XML	file.	The	structure	XML	file	for	an	entity	may	contain	
attribute	definitions,	validations,	accessor	methods	for	associated	entities,	and	named	
criteria. Note that when you create a data control, IDE will not generate any structure
XML	files	for	entities	used	in	the	underlying	service	implementation,	by	default.

To	generate	a	structure	XML	file	for	a	bean	in	the	data	collection,	perform	the	
following steps:

1. Open DataControls.dcx	file,	which	owns	the	collection	in	the	
overview editor.

2. Select the data collection node for which you want to generate a structure
XML	file,	right-click	on	it,	and	select	Edit Definition icon displayed in the
Data Controls panel.

When you do this, IDE generates a sparse structure XML for the entity (bean) used in
the data collection, if the following conditions are met:

•	 The selected node in the Data Controls panel must be a data collection
returned by an accessor method

•	 The collection returned by the accessor must have a valid element
type	specified,	for	example,	public List<Departments>
getDepartmentsFindAll()

The	structure	XML	file	is	really	sparse	and	does	not	contain	any	metadata	when	
you	generate	it.	To	edit	the	default	properties	for	an	entity,	open	the	structure	file	
in the overview editor and alter the properties as appropriate. You can edit the
following properties:

•	 Edit properties on existing attributes such as primary key, updatable, default
value, UI hints, and validation rules

•	 Add transient attributes

Note that transient attributes added in the structure XML are managed
by the ADF binding layer. The JPA entity also allows you to mark
an attribute in the entity class as transient through the @Transient
annotation, which is managed by the entity manager. Both are an
acceptable approaches for defining non-persistent attributes when you
use EJB with ADF.

•	 Add	a	named	criteria	definition

When	you	edit	properties,	they	are	stored	in	the	structure	XML	file.	The	following	is	
an	example	of	the	structure	XML	file	created	for	the	Departments entity:

<PDefViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Departments">
 <PDefAttribute
 Name="departmentName">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId=
"${adfBundle['model.ejb.HRDataModelEJBBundle']'model.ejb.Departments.
departmentName_LABEL']}"/>
 </SchemaBasedProperties>
 </Properties>
 </PDefAttribute>
</PDefViewObject>

Defining UI hints for attributes in a bean
To	define	UI	hints	for	attributes	in	a	bean,	open	the	structure	XML	file	of	the	entity	
(bean) in the overview editor. Click on the Attributes tab and then select the desired
attributes for which you want to specify or override UI hints. The following table
lists	the	commonly	used	properties	for	an	attribute	in	a	bean	definition:

Property name Description
Key attribute This indicates if the attribute is marked

as a key attribute in the bean. At least one
attribute should be marked as a key attribute
in a bean for the framework to function
properly. For example, the ADF binding layer
uses key attributes to uniquely identify each
row in a collection.

Updatable This specifies whether the attribute value is
updatable by the client or not.

Queryable This specifies if the attribute should appear
in the search form generated for the All
Queryable Attributes view criteria for a data
collection.

Default value This specifies the default value for an
attribute for a new bean instance. The default
value can be set either as static literals or
Groovy expressions.

Display hint This specifies display hints property, such as
Hide or Display for an attribute.

Label This specifies the label for the attribute.
Tooltip This specifies the tool tip for the attribute.
Control type This specifies the control type for the

attribute. This is used by IDE to add the
appropriate JSF tag when you drop the
collection on to the page. This is also used
by dynamically rendering UI to decide the
control type for an attribute.

Category This specifies the category of the group
attributes. This is used by the dynamic
rendering UI to group attributes for display.

Property name Description
Field order This specifies the field order hint to order

how the user interface will render the
attribute values within its category. This is
useful to control the order of attributes in
dynamic UI components.

Auto submit This specifies the auto submit property for the
attribute.

Defining validations for attributes in a bean
ADF	allows	you	to	declaratively	add	validation	rules	for	entity	attributes.	To	define	a	
validation, follow these steps:

1. Right-click on the desired data collection in the Data Controls panel and
select Edit Definition.	While	doing	so	IDE	opens	up	the	structure	XML	file	in	
the overview editor. In the overview editor, click on the Validation Rules tab
and click on the green plus icon to add validation.

2. In the Add Validation dialog, select Rule Type	and	specify	the	definition	for	
the selected rule. Click on the Failure Handling tab and specify the severity
and error message text.

3. Click on OK to save changes.

Defining named criteria
The	named	criteria	are	used	to	filter	the	data	collection	returned	by	the	accessor	
methods. You can use named criteria to declaratively build the query-by-example
search forms.

To	define	named	criteria,	follow	these	steps:

1. Open	the	structure	XML	file	for	the	entity	(bean)	in	the	overview	editor.	
Select the Named Criteria tab and click on the green plus icon in the Named
Criteria section to create a new criteria.

2. In the Create Named Criteria screen, enter the name and specify the criteria
execution mode. The default execution mode is In Memory. Add a criteria
item, a criteria group, or other existing named criteria as appropriate, and
click on OK to save changes.

Once	you	have	define	the	named	criteria	for	an	entity,	the	same	will	be	displayed	
under the respective data collection node in the Data Controls panel as a child of
the Named Criteria node. The following screenshot displays the named criteria item
definition	for	the	Department bean:

We	have	discussed	the	options	for	defining	the	Named Criteria,
available in the Create Named Criteria screen, during our discussions
on the view objects. If you need a quick brush-up on this subject, refer
to the topic View Criteria in Chapter 4, Introducing View Object.

Building search UI for EJB
You can use named criteria to declaratively build a search form for your JPA model.
To build a search form, expand the accessor-returned data collection node in the
Data Controls panel, then select the desired named criteria displayed below the
Named Criteria node, and drop it on to the page by choosing ADF Query Panel
(or other appropriate search template) in the context menu. This action adds the

af:query component to the page and generates the necessary search binding.

At runtime, when you click on the Search button, the framework generates the
necessary Java Persistence Query Language (JPQL) and executes the query. The
framework	uses	a	preconfigured	method	present	in	the	session	bean	for	executing	
the search:

public Object queryByRange(String jpqlStmt, int firstResult,
int maxResults)

This method is added to the bean source by the IDE when it is created.

Building a data bound edit page
The ADF binding framework along with JDeveloper IDE offers a visual and
declarative UI development experience even for EJB business services. Once you
generated data controls. The steps for building a UI for EJB are more or less the same
as what we have discussed for business components in Chapter 7, Building Business
Services with User Interface and Chapter 8, Building Data Bound Web User Interfaces.

To build an edit page, select the data collection in the Data Controls panel that
returns the data you want to display and drop it on to a page by choosing Form |
ADF Form in the context menu. In the Edit Form Fields dialog, delete the
unwanted	fields	and	select	Include Navigation Controls to display navigation
controls as appropriate.

Adding the create functionality
To add create functionality in a page, drop the built-in Create operation for the
data collection from the Data Controls panel on to the page as suitable command
components such as ADF Button. At runtime, when this component is clicked, the
framework creates a new entity instance and adds it to the data collection. Note that
this step just helps you to create rows in memory. To post changes to the database,
you may need to call the appropriate methods as discussed under the section Saving
changes to database.

Saving changes to the database
The new rows that are added by using the built-in Create operation, or changes
done on the entity instances in the data collection at runtime, are not persisted in
the database by default. When you use the JPA entity for building a persistence
layer, you may have to call either the merge() or persist() method on javax.
persistence.EntityManager for posting changes to the database. The merge()
method call creates a new entity instance, copies the state from the supplied entity,

and makes the new copy managed, whereas the persist() method adds the
supplied entity instance to the persistence context and makes that instance managed.
To keep things simple, you can use persist() for persisting new entities and
merge() can be used for updating existing entities.

When you generate a session bean or Java service facade for a JPA model, IDE
generates the separate merge() and persist() methods for each entity present in
persistence.xml. An example is here:

@Stateless(name = "HRSessionEJB", mappedName = "ADFDevGuideCh12-
EJBDataModel-HRSessionEJB")
public class HRSessionEJBBean implements HRSessionEJB,
HRSessionEJBLocal {

 @PersistenceContext(unitName="EJBDataModel")
 private EntityManager em;

 public Departments persistDepartments(Departments
 departments){
 em.persist(departments);
 return departments;
 }
}

Drop the appropriate entity merge method on to the page as an ADF Button for
adding save functionality for an entity. While doing so, JDeveloper IDE will ask
you to specify an appropriate entity instance as the value for the method parameter.
Typically, the value would be the row that is being currently edited in the UI. You
can specify the currently edited entity instance, using binding EL. For example, the
following EL refers the Departments instance in departmentsFindAllIterator that
is currently being selected in the UI:

#{bindings.departmentsFindAllIterator.currentRow.dataProvider}

The following code snippet illustrates how a save button is bound to the
mergeDepartments() method in HRServiceSessionEJB:

<af:commandButton actionListener="#{bindings.mergeDepartments.
execute}" text="Save Departments" id="cb6"/>

The	method	action	binding	present	in	the	page	definition	file	for	the	
mergeDepartments <methodAction> is as follows:

<methodAction id="mergeDepartments"
 RequiresUpdateModel="true" Action="invokeMethod"
 MethodName="mergeDepartments"
 IsViewObjectMethod="false"
 DataControl="HRServiceSessionEJBLocal"
 InstanceName="data.HRServiceSessionEJBLocal.dataProvider"
 ReturnName="data.HRServiceSessionEJBLocal.
 methodResults.mergeDepartments_HRServiceSessionEJBLocal
 _dataProvider_mergeDepartments_result">
 <NamedData NDName="departments" NDValue=
 "#{bindings.departmentsFindAllIterator.currentRow.dataProvider}"
 NDType="com.packtpub.adfguide.ch12.model.ejb.Departments"/>
</methodAction>

Oracle ADF binding architecture for EJB
We covered the basic steps for building a UI for EJB services in the earlier sections.
Now you might be curious to know how ADF binding interacts with the EJB layer.
The remaining section of this chapter discusses this topic in detail.

This section discusses how the ADF model wires the UI elements with data
collections from the EJB-based business service methods.

When you drop a data collection from the Data Controls panel on to a page, IDE
updates	the	page	definition	file	with	the	<accessorIterator> binding entries. The
<accessorIterator> binding manages iteration over the collection in an EJB or Java
bean data control. Here is an example:

<iterator Binds="root" RangeSize="25" DataControl="HRServiceSessionEJB
Local" id="HRServiceSessionEJBLocalIterator"/>
<accessorIterator MasterBinding="HRServiceSessionEJBLocalIterator"
Binds="departmentsFindAll" RangeSize="25"
DataControl="HRServiceSessionEJBLocal"
BeanClass="com.packtpub.adfguide.ch12.model.ejb.Departments" id="depar
tmentsFindAllIterator"/>

The MasterBinding entry binds to the iterator that refers the master to the
accessor iterator. This is used for simulating the master-detail hierarchy in the
binding container.

In nutshell, the data collections returned by the getter method from EJB are wired to
UI controls through iterator bindings. Now, you must be curious to know about the
framework components involved in wiring the UI with the data collection returned
by	the	getter	methods	defined	in	EJB	or	the	Java	bean.	The	following	diagram	
illustrates various components used by the ADF Model to invoke EJB services:

EJB Session Bean

View

Model

Business Services

EJB Invocation Handlers

Range Fetch, Search
Data control

(DCBeanDataControl)

Method Action

Query Collection Cache

Query CollectionView Object
(DCDataVO)

JSF Page with ADF Binding

JPQLBeanDataCollection

JPQLDataFilterHandler

Row Set
Row Set Iterator

Row(DCDataRow)

Row

Behind the scenes, the framework uses the row set object to aggregate the data
collection returned from EJB. Each element in the row set is of type oracle.adf.
model.bean.DCDataRow. The row set object returns a default row set iterator
instance to iterate over the collection, which is used by the framework to populate
the UI. Row set do not store the rows directly within them, rather they use a query
collection object for storing rows. Keeping the rows in a query collection allows
multiple	row	set	iterators	with	the	same	"query	filters"	to	re-use	the	same	collection.	
Each element in the row set points to the row stored in the query collection instance.
Each row in the query collection holds a data provider instance, which is a JPA entity
if the underlying data model is built using JPA.

Now you may ask, who manages the row set and controls the data population logic

when the client iterates over the rows in a row set. For ADF Business Components,
this is done by oracle.jbo.server.ViewObjectImpl. For the EJB or Java Bean
data control, the ADF binding layer uses a specialized view object implementation
class, known as oracle.adf.model.bean.DCDataVO, to do this job. DCDataVO
makes sure that the rows are populated when a client iterates over the rows. All data
requests from DCDataVO to the underlying Java or EJB services are routed through
the DCBeanDataControl class that manages the connection to the data provider
service implementation. To enable range fetching, sorting, and search functionality,
the framework engages JPQLDataFilterHandler at runtime. This happens when
DCDataVO	reads	the	accessor	methods	defined	in	the	EJB	or	Java	services.

Pagination support in the bean data
control
When you create data control for an EJB session bean, IDE generates DataControls.
dcx for the bean. The metadata section in a data control contains entries for invoking
EJB	services	as	well	as	configurations	parameters	that	decide	the	data	control	
behavior at runtime when data collections exposed by EJB are accessed by the client.

DataControlHandler
When the client accesses the data collection exposed by a Java bean or EJB session
bean,	the	binding	layer	engages	the	data	control	handler	class	specified	in	the	data	
control	definition	file.	This	class	can	be	set	appropriately	to	enable	pagination,	sort,	
and query features on the data collection retuned by the accessor methods. The
following example illustrates the DataControlHandler	configuration	for	an	EJB	
session bean:

<AdapterDataControl
 ...

<ejb-definition ejb-version="3.0" ejb-name="HRServiceSessionEJB" ejb-
type="Session"
 ejb-business-interface="com.packtpub.adfguide.ch12.
 model.ejb.HRServiceSessionEJBLocal"
 ejb-interface-type="local" initial-context-
 factory="weblogic.jndi.WLInitialContextFactory"

 DataControlHandler=

 "oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler"

 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>

</AdapterDataControl>

The following are the two possible DataControlHandler implementations offered
by the framework:

•	 oracle.adf.model.adapter.bean.DataFilterHandler: This supports
both	pagination	and	in-memory	filtering—typically	used	for	simple	Java	
bean data control. If you specify oracle.adf.model.adapter.bean.
DataFilterHandler as DataControlHandler in the .dcx	file,	the	Java	
service class, on which data control is built, is required to have two more
additional	methods	with	predefined	contracts:

 ° public long get<AccessorName>Size(): A method for returning
total records

 ° public List<T> get<AccessorName>(int start, int
increment): A range accessor method that returns a paginated list
whose page size is set through the value for the parameter increment
passed to the method

For example, to enable pagination for a method public List<Departments>
getDepartments() exposed in a data control, the Java bean class should
have an implementation for the following methods:

public List<Departments> getDepartments(){
 //Return department list
 return departmentList;
}
public List<Departments> getDepartments(int start, int increment){
 //Return departments in the range set by the caller
 return getPaginatedDepartmentList(start, increment);
}
public long getDepartmentsSize(){
 // Return total
 return getTotalDepartments();
}

•	 oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler: This is
the default DataFilterHandler implementation, when you generate data
control for the Java service facade or session bean facade that uses the JPA
data model. JPQLDataFilterHandler	supports	pagination,	filtering,	and	
query criteria out of the box.

When you build a session EJB or Java service facade for your JPA-
based model project, IDE will add the following method in your service
implementation:
public Object queryByRange(String jpqlStmt, int firstResult, int
maxResults){ ... }

This method acts as a common entry point for all infrastructural service calls
such as count queries, range fetching, and search and sort operations. It is the
JPQLDataFilterHandler class that prepares the requests from the binding
layer before passing it to the queryByRange()	method	defined	in	the	
bean implementation.

Disabling pagination and default data control
features
If you remove the DataControlHandler attribute, DCBeanDataControl directly
invokes the accessor method, by passing the handlers. The built-in support for
named queries and pagination is disabled with this setting.

What you may need to know about pagination
support for data collection in a bean data control
Keep the following points in mind while using the paginated data collection from a
bean data control:

•	 Only the data collection type returned by a getter method (for example,
public List<Departments> getDepartmentsFindAll()) supports
pagination. The non-getter method does not support pagination.

•	 In a master-details scenario, only the master list is paginated and the details
list is not paginated.

How does ADF Model data binding work
in JavaEE Application?
In this section, we will discuss how ADF data binding interacts with EJB-based
business services at runtime and the role of various framework components in this
exercise. Take a look at the following code snippet from a managed bean that reads
data	from	a	getter	method	(the	accessor	method)	defined	in	an	EJB	session	bean	
using binding APIs:

In managed bean code

//Get the current binding container
DCBindingContainer dcb =
 (DCBindingContainer)BindingContext.getCurrent().
 getCurrentBindingsEntry();
//Get the departmentsFindAllIterator iterator

DCIteratorBinding dcib =
 dcb.findIteratorBinding("departmentsFindAllIterator");
//Iterate over rows from the iterator
RowSetIterator rowIter = dcib.getRowSetIterator();
rowIter.reset();
while (rowIter.hasNext()) {
 Row row = rowIter.next();
}

The following sequence diagram illustrates the interaction between the ADF model
framework components when the client executes the preceding code snippet to read
the	data	from	the	data	collection	returned	by	an	accessor	method	defined	in	the	EJB	
session bean:

DCDataRow
.
.

JPQLBeanDataCollection

bulldlterator

setUserDataForCollection

setUserData

get

Fetch All Rows

create

CreateInstanceFromResultSet
FetchIfNedded

JPQLBeanDataCollection

Fetch rows in the
rangesize and cache
them for further
processing

JPQLBeanDataCollection
.
.

Client
.
.

DCBindingContainer
.
.

RowSetlterator
.
.

ViewRowsetImpl
.
.

DCDataVO
.
.

QueryCollection
.
.

DCBeanDataControl
.
.

JPQLDataFilterHandler
.
.

HRServiceSessionEJBBean
.
.

findlteratorBinding

DClteratorBinding haseNext execute

executeQueryForCollection

getDataProvider

invokeAccessor
InvokeAccessor

create

getEstimatedRowCount

queryByRange

queryByRange

addCollection

next

Row
Row

getRow

Row

get

Row

In this example, the client reads an iterator executable from the binding container
and starts the iteration over rows by calling hasNext() on the RowSetIterator
object.	As	this	is	the	very	first	call	that	refers	the	underlying	data	collection	and	
it is not yet read in the execution cycle, the RowSetIterator	object	will	fire	
executeQuery() on the row set implementation class that manages the data
collection for the client.

Note that the row set, by design, neither queries the datasource nor controls the data
read operation; rather its role is to manage the returned collection to be used by the
client. The framework deploys the oracle.adf.model.bean.DCDataVO object to
control the execution cycle for a row set. Conceptually, this component is the same
as the view object implementation that we discussed in Chapter 4, Introducing View
Object. Obviously, the underlying implementation is different, than this and it is
explained in the following paragraph.

The row set invokes executeQueryForCollection(Object qcObj, Object[]
params, int noUserParams) on DCDataVO to read data from the underlying
services. DCDataVO gets the appropriate data control instance, which manages the
connection to the underlying business service implementation and delegates the
getter method call (invokeAccessor()) to the data control. The framework, by
default, uses DCBeanDataControl for invoking EJB or Java services. Now you may
ask, how does the ADF binding framework know what technology (EJB or Java)
is used for building business services? It is the <AdapterDataControl>	definition	
present in the DataControls.dcx	file	that	differentiates	the	technologies	used	for	
implementing services.

While preparing the request for accessing EJB, the binding layer checks if any
DataControlHandler	class	has	been	specified	for	the	EJB	definition	present	in	
the data control descriptor XML (DataControls.dcx)	file.	If	one	is	found,	the	
framework routes the request for accessing EJB through the DataControlHandler
class	read	from	the	EJB	definition.	Here	is	an	example	for	an	EJB-definition	entry	in	
DataControls.dcx:

<ejb-definition ejb-version="3.0"
 ejb-name="HRServiceSessionEJB"
 ejb-type="Session"
 ejb-business-interface="..."
 ejb-interface-type="local"
 initial-context-factory=
 "weblogic.jndi.WLInitialContextFactory"
 DataControlHandler= "oracle.adf.model.adapter.bean.jpa.
JPQLDataFilterHandler"
 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>

When you generate a data control for an EJB session bean, by default, JDeveloper
sets DataControlHandler to the oracle.adf.model.adapter.bean.jpa.
JPQLDataFilterHandler class. The JPQLDataFilterHandler class, under
the cover, uses a special data collection model (oracle.adf.model.adapter.
bean.provider.JPQLBeanDataCollection) class for invoking services. When
JPQLBeanDataCollection is instantiated, it initializes the state and prepares itself
for fetching the data collection. As the pagination feature requires a total record

count, the JPQLBeanDataCollection	fires	a	count	query	during	this	stage.	To	do	
this, the JPQLBeanDataCollection class prepares the appropriate JPQL count query
statement and invokes the queryByRange(String jpqlStmt, int firstResult,
int maxResults)	method	defined	in	the	service	implementation	class.

DCDataVO caches the retuned JPQLBeanDataCollection in the QueryCollection
object. Once the initialization phase is over, the row set iterator initiates the
fetch request for all rows. This request is routed through QueryCollection,
which reads the cached JPQLBeanDataCollection data collection and starts
iterating over the collection. While doing so, if the next() call does not result in
any result and the total number of rows is more than the current rows fetched,
JPQLBeanDataCollection invokes the queryByRange(String jpqlStmt, int
firstResult, int maxResults)	method	in	the	service	implementation	and	fills	the	
collection with JPA entities returned by the query. For each entity in the collection,
the framework creates the oracle.adf.model.bean.DCDataRow instance, passing
the JPA entity instance as the data provider. When the client refers a value for an
attribute in a row, the framework actually reads the value from the data provider
entity instance associated with that row. In simple words, framework wraps JBA
entity instances returned by the query method using Row objects to be used by the
binding layer.

Customizing error handling for EJB
services
The ADF Model allows you to customize the default error handling for EJB data
control by extending the default DCErrorHandlerImpl class. You can use this
feature to format the exceptions thrown by the JPA entities. We have discussed the
customization of error reporting in Chapter 11, More on Validations and Error Handling
under the topic Error Handling in ADF. Refer back to this topic, if you need a quick
brush-up on this subject.

Following is an example for a custom exception handler for EJB.
CustomExceptionHandler used in this example displays only the error message
corresponding	to	the	root	exception,	hiding	all	child	exceptions	from	the	final	
error display.

/**
 * Custom exception handler for EJB. This error handler
 * class hides unwanted details present in the exception
 * when reported to the user
 */
public class CustomExceptionHandler extends DCErrorHandlerImpl {

 public CustomExceptionHandler(boolean b) {
 super(b);
 }

 public CustomExceptionHandler() {
 super(true);
 }

 /**
 * This method pre-process exception before displaying it.
 * @param bc
 * @param ex
 */
 @Override
 public void reportException(DCBindingContainer bc,
 Exception ex) {
 ex.printStackTrace();
 //Find the root cause of the exception
 ex = (Exception)getRootCauseException(ex);
 //Following method Call invokes
 //JboException::setAppendCodes(false)
 //recursively on all child exceptions
 disableAppendCodes(ex);
 super.reportException(bc, ex);
 }

 /**
 * Specify appendCode flag for JboException to false
 * if this exception
 * should not prefix the error message
 * with Product and Message Ids. By default this flag
 * is set to true, This method sets it to false.
 * @param ex
 */
 private void disableAppendCodes(Exception ex) {
 if (ex instanceof JboException) {
 JboException jboEx = (JboException)ex;
 //Set appendCode to false if this exception
 //should not prefix the error
 //message with Product and Message Ids.
 jboEx.setAppendCodes(false);
 Object[] detailExceptions = jboEx.getDetails();
 if ((detailExceptions != null) &&

 (detailExceptions.length > 0)) {
 for (int z = 0, numEx =
 detailExceptions.length; z < numEx; z++) {
 disableAppendCodes
 ((Exception)detailExceptions[z]);
 }
 }
 }
 }

 /**
 * Get the root exception
 * @param ex
 * @return
 */
 public Throwable getRootCauseException(Throwable ex) {
 Throwable rtEx = null;
 if ((rtEx = ex.getCause()) == null) {
 return ex;
 } else {
 return getRootCauseException(rtEx);
 }

 }

}

You	must	configure	the	error	handler	class	in	the	in	the	DataBindings.cpx	file	of	the	
appropriate view controller project as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
version="11.1.2.60.81" id="DataBindings"
 SeparateXMLFiles="false"
 Package="com.packtpub.adfguide.ch12.view"
 ClientType="Generic"
 ErrorHandlerClass=
 "com.packtpub.adfguide.ch12.view.CustomExceptionHandler" >
 ...
</Application>

This chapter is intended to introduce you to the ADF binding support
for EJB. To learn more about the visual development support offered
by JDeveloper IDE for building EJB applications, refer to Oracle® Fusion
Middleware Java EE Developer's Guide for Oracle Application Development
Framework. To access this documentation online, go to http://
www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html, navigate to Oracle JDeveloper and
ADF Documentation Library and then select Java EE Developer's
Guide.	Use	the	search	option	to	find	specific	topics.

Summary
In	this	chapter,	we	looked	at	the	EJB	binding	support	in	Oracle	ADF.	Specifically,	
we discussed how to use JDeveloper IDE for visually building EJB services. We
also discussed how to leverage ADF binding features for declaratively building a
UI for EJB.

The next chapter will discuss how to secure a Fusion web application, using
ADF Security.

