
More on ADF Business
Components and Fusion

Page Runtime
This appendix discusses various useful features and techniques that we deferred
while discussing specific topics in this book. Most of the topics that we will discuss
here require a good understanding of the various layers of the ADF framework.
Make sure you read the basics before you start reading this appendix. The following
topics are discussed in this appendix:

•	 Lifecycle of an ADF Fusion web page with region
•	 Transaction management in Fusion web applications
•	 Building a dynamic model-driven UI with ADF
•	 Building composite view objects
•	 Building application modules with no database connection
•	 Looking up the UI component from the component tree at runtime

More on ADF Business Components and Fusion Page Runtime

[2]

Lifecycle of an ADF Fusion web page
with region
When a client requests for a page with region, at the server, ADF runtime
intercepts and pre-processes the request before passing it to the page lifecycle
handler. The pre-processing tasks include security check, initialization of Trinidad
runtime, and setting up the binding context and ADF context. This is shown in the
following diagram:

This appendix does not repeat the discussion on the Fusion page lifecycle
phases that we have already discussed a while ago in Chapter 7, Binding
Business Services with the User Interface. Refer back to the topic What
happens when you access a Fusion web page in Chapter 7, Binding Business
Services with the User Interface for a quick brush up on the Fusion page
lifecycle phases.

After setting up the context for processing the request, the ADF framework starts
the page lifecycle for the page. During the Before Restore View phase of the page,
the framework will try to synchronize the controller state with the request, using the
state token sent by the client. If this is a new request, a new root view port is created
for the top-level page. In simple words, a view port maps to a page or page fragment
in the current view. During view port initialization, the framework will build a
data control frame for holding the data controls. During this phrase runtime also
builds the binding containers used in the current page. The data control frame will
then be added to the binding context object for future use. After setting up the basic
infrastructure required for processing the request, the page lifecycle moves to the
Restore View phase.

Appendix

[3]

During the Restore View phase, the framework generates a component tree for the
page. Note that the UI component tree, at this stage, contains only metadata for
instantiating the UI components. The component instantiation happens only during
the Render Response phase, which happens later in the page lifecycle. If this is a
fresh request, the lifecycle moves to the Render Response phase. Note that, in this
appendix, we are not discussing how the framework handles the post back requests
from the client.

During the Render Response phase, the framework instantiates the UI components
for each node in the component tree by traversing the tree hierarchy. The completed
component tree is appended to UIViewRoot, which represents the root of the UI
component tree.

Once the UI components are created, runtime walks through the component tree and
performs the pre-rendering tasks. The pre-rendering event is used by components
with lazy initialization abilities, such as region, to keep themselves ready for
rendering if they are added to the component tree during the page cycle. While
processing a region, the framework creates a new child view port and controller state
for the region, and starts processing the associated task flow. The following is the
algorithm used by the framework while initializing the task flow:

1.	 If the task flow is configured not to share data control, the framework creates
a new data control frame for the task flow and adds to the parent data control
frame (the data control frame for the parent view port).

2.	 If the task flow is configured to start a new transaction, the framework calls
beginTransaction() on the control frame.

3.	 If the task flow is configured to use existing transaction, the framework
asks the data control frame to create a save point and to associate it to the
page flow stack.

4.	 If the task flow is configured to 'use existing transaction if possible',
framework will start a new transaction on the data control, if there is no
transaction opened on it. If a transaction is already opened on the data
control, the framework will use the existing one.

Once the pre-render processing is over, each component will be asked to write out
its value into the response object. During this action, the framework will evaluate
the EL expressions specified for the component properties, whenever they are
referred in the page lifecycle. If the EL expressions contain binding expression
referring properties of the business components, evaluation of the EL will end up
in instantiating corresponding model components. The framework performs the
following tasks during the evaluation of the model-bound EL expressions:

•	 It instantiates the data control if it is missing from the current data

More on ADF Business Components and Fusion Page Runtime

[4]

control frame.
•	 It performs a check out of the application module.
•	 It attaches the transaction object to the application module. Note that it is the

transaction object that manages all database transactions for an application
module. Runtime uses the following algorithm for attaching transactions to
the application module:

1.	 If the application module is nested under a root application module
or if it is used in a task flow that has been configured to use an
existing transaction, the framework will identify the existing
DBTransaction object that has been created for the root application
module or for the calling task flow, and attach it to the current
application module.
Under the cover, the framework uses the jbo.shared.txn parameter
(named transaction) to share the transaction between the application
modules. In other words, if an application module needs to share a
transaction with another module, the framework assigns the same
jbo.shared.txn value for both application modules at runtime.
While attaching the transaction to the application module, runtime
will look up the transaction object by using the jbo.shared.txn
value set for the application module and if any transaction object is
found for this key, it re-uses the same.

2.	 If the application module is a regular one, and not part of the
task flow that shares a transaction with caller, the framework
will generate a new DBTransaction object and attach it to the
application module.

•	 After initializing the data control, the framework adds it to the data control
frame. The data control frame holds all the data control used in the current
view port. Remember that a, view port maps to a page or a page fragment.

•	 Execute an appropriate view object instance, which is bound to the iterator.

At the end of the render response phase, the framework will output the DOM
content to the client. Before finishing the request, the ADF binding filter will call
endRequest() on each data control instance participating in the request. Data
controls use this callback to clean up the resources and check in the application
modules back to the pool.

Appendix

[5]

Transaction management in Fusion web
applications
A transaction for a business application may be thought of as a unit of work resulting
in changes to the application state. Oracle ADF simplifies the transaction handling
by abstracting the micro-level management of transactions from the developers. This
section discusses the internal aspects of the transaction management in Fusion web
applications. In this discussion, we will consider only ADF Business Component-
based applications.

What happens when the task flow commits a
transaction
Oracle ADF allows you to define transactional boundaries, using task flows. Each
task flow can be configured to define the transactional unit of work. Refer back to the
Transaction management in a bounded task flow section in Chapter 10, Taking a Closer Look
at the Bounded Task Flow for a quick brush-up.

Let us see what happens when a task flow return activity tries to commit the
currently opened transaction. The following is the algorithm used by the framework
when the task flow commits the transaction:

1.	 When you action a task flow return activity, a check is carried over to see
whether the task flow is configured for committing the current transaction
or not. And if found true, runtime will identify the data control frame
associated with the current view port and call the commit operation on it.

2.	 The data control frame delegates the "commit" call to the transaction handler
instance for further processing. The transaction handler iterates over all data
controls added to the data control frame and invokes commitTransaction
on each root data control. It is the transaction handler that engages all data
controls added to the data control frame in the transaction commit cycle.

3.	 Data control delegates the commit call to the transaction object that is
attached to the application module. Note that if you have a child task flow
participating in the transaction started by the caller or application modules
nested under a root application module, they all share the same transaction
object. The commit call on a transaction object will commit changes done by
all application modules attached to it.

More on ADF Business Components and Fusion Page Runtime

[6]

The following diagram illustrates how transaction objects that are attached to the
application modules are getting engaged when a client calls commit on the data
control frame:

Programmatically managing a transaction in a
task flow
If the declarative solution provided by the task flow for managing the transaction
is not flexible enough to meet your use case, you can handle the transaction
programmatically by calling the beginTransaction(), commit(), and rollback()
methods exposed by oracle.adf.model.DataControlFrame.

The data control frame acts as a bucket for holding data controls used in a binding
container (page definition file). A data control frame may also hold child data control
frames, if the page or page fragment has regions sharing the transaction with the
parent. When you call beginTransaction(), commit(), or rollback() on a data
control frame, all the data controls added to the data control frame will participate
in the appropriate transaction cycle. In plain words, the data control frame provides
a mechanism to manage the transaction seamlessly, freeing you from the pain of
managing transactions separately for each data control present in the page definition.
Note that you can use the DataControlFrame APIs for managing a transaction only
in the context of a bounded task flow with an appropriate transaction setting (in the
context of a controller transaction).

Appendix

[7]

The following example illustrates the APIs for programmatically managing a
transaction, using the data control frame:

//In managed bean class

public void commit(){
 //Get the binding context
 BindingContext bindingContext = BindingContext.
 getCurrent();
 //Gets the name of current(root) DataControlFrame
 String currentFrame =
 bindingContext.getCurrentDataControlFrame();
 //Finds DataControlFrame instance
 DataControlFrame dcFrame =
 bindingContext.findDataControlFrame(currentFrame);
 try {
 // Commit the trensaction
 dcFrame.commit();
 //Open a new transaction allowing user to continue
 //editing data
 dcFrame.beginTransaction(null);
 } catch (Exception e) {
 //Report error through binding container
 ((DCBindingContainer)bindingContext.
 getCurrentBindingsEntry()).
 reportException(e);
 }
}

Programmatically managing a transaction in
the business components
The preceding solution of calling the commit method on the data control frame is
ideal to be used in the client tier in the context of the bounded task flows. What if
you need to programmatically commit the transaction from the business service
layer, which does not have any binding context?

More on ADF Business Components and Fusion Page Runtime

[8]

To commit or roll back the transactions in the business service layer logic where
there is no binding context, you can call commit() or rollback() on the oracle.
jbo.Transaction object associated with the root application modules. The following
example shows a method defined in an application module, which invokes commit
on the Transaction object attached to the root application module:

//In application module implementation class
/**
 *This method calls commit on transaction object
 */
public void commit(){
 this.getRootApplicationModule().getTransaction().commit();
}

Sharing a transaction between application
modules at runtime
An application module, nested under a root application module, shares the same
transaction context with the root. We have discussed the design-time support for
nesting the application modules in Chapter 6, Introducing the Application Module. This
solution will fit well if you know that the application module needs to be nested
during the development phase of the application. What if an application module
needs to invoke the business methods from various application modules whose
names are known only at runtime, and all the method calls require to happen in
same transaction? You can use the following API in such scenarios to create the
required application module at runtime:

DBTransaction::createApplicationModule(defName);

The following method defined in a root application module creates a nested
application module on the fly. Both calling and called application modules share the
same transaction context.

//In application module implementation class
/**
* Caller passes the AM definition name of the application
* module that requires to participate in the existing
* transaction. This method creates new AM if no instance is
* found for the supplied amName and invokes required service
* on it.

Appendix

[9]

* @param amName
* @param defName
*/
public void nestAMIfRequiredAndInvokeMethod(String amName, String
defName) {
 //TxnAppModule is a generic interface implemented by all
 //transactional AMs used in this example
 TxnAppModule txnAM = null;
 boolean generatedLocally = false;
 try {

 //Check whether the TxnAppModuleImpl is already nested
 txnAM = (TxnAppModule)getDBTransaction().
 getRootApplicationModule().
 findApplicationModule(amName);
 //create a new nested instance of the TxnAppModuleImpl,
 // if not nested already

 if(txnAM == null) {
 txnAM = (TxnAppModule)this.
 getDBTransaction().
 createApplicationModule(defName);
 generatedLocally = true;
 }
 //Invoke business methods
 if (txnAM != null) {
 txnAM.updateEmployee();
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 //Remove locally created AM once use is over
 if (generatedLocally && txnAM != null) {
 txnAM.remove();
 }
 }
}

More on ADF Business Components and Fusion Page Runtime

[10]

Building a dynamic model-driven UI with
ADF
All the UI components that we have discussed so far in this book were static in
nature. What if you want to build a UI that needs to change its display depending
on the business conditions? ADF provides basic infrastructure support for
implementing such use cases. At a high level, the solution is to programmatically
build a dynamic data model (view object) and to bind them with dynamically built
UI components. Note that in this solution, we are leveraging the model-driven
developments support offered by ADF for building a dynamic UI. This involves the
following tasks:

•	 Building the model by using a dynamic view object
•	 Building the binding definition for a dynamic view object
•	 Building a dynamic table UI component
•	 Using the method call activity to initialize the model for the dynamic UI

These tasks are discussed in detail in the following sections.

Building the model by using a dynamic view
object
We are following a model-driven approach for building a dynamic UI. As the UI
needs to pick up data from different datasources, we cannot use static view objects
for building a dynamic UI. We will build view objects dynamically whose definition
changes with application state. There are multiple approaches for building dynamic
view objects. These approaches are discussed in the following sections. You must
choose the right approach based on the use case.

Dynamic view objects with entity usage
You will use an entity-based dynamic view object, if the user can edit data displayed
in the dynamic UI. We have discussed APIs for programmatically building the view
object backed up by entity objects in Chapter 5, Advanced Concepts on Entity Objects
and View Objects. If you need a quick brush up on APIs, refer back to the topic
Building Business Components Dynamically in Chapter 5. Here is a quick
overview of the methods that we have already discussed in Chapter 5.

Appendix

[11]

Step 1—building a dynamic entity object
The following code snippet illustrates the APIs for building a dynamic entity object.
This example builds an entity object for the DEPARTMENTS table.

//In application module implementation class
/**
 * Build entity definition for DEPARTMENTS table
 * @return
 */
private EntityDefImpl buildDeptEntitySessionDef() {
 EntityDefImpl entDef =
 new EntityDefImpl
 (oracle.jbo.server.EntityDefImpl.DEF_SCOPE_SESSION,
 "DynamicDeptEntityDef");

 entDef.setFullName(entDef.getBasePackage() + ".dynamic." +
 entDef.getName());
 entDef.setName(entDef.getName());
 entDef.setAliasName(entDef.getName());
 //Set the database table name
 entDef.setSource("DEPARTMENTS");
 entDef.setSourceType(EntityDefImpl.DBOBJ_TYPE_TABLE);
 //Add the attributes
 entDef.addAttribute("DepartmentId", "DEPARTMENT_ID",
 Integer.class, true, false, true);
 entDef.addAttribute("DepartmentName", "DEPARTMENT_NAME",
 String.class, false, false, true);
 entDef.addAttribute("ManagerId", "MANAGER_ID",
 Integer.class, false, false, true);
 //Resolves and validates
 //entity definition before this definition object can be
 //used.
 entDef.resolveDefObject();

 //Write to XML stream
 entDef.writeXMLContents();
 //Save to hard disk
 entDef.saveXMLContents();

 return entDef;
}

More on ADF Business Components and Fusion Page Runtime

[12]

Step 2—building a dynamic view object with the entity
object usage
The following code snippet illustrates the APIs for building a dynamic view object
with the entity object usage from Step 1:

/**
 * Build view deintion for dept EntityDefImpl
 * @param entityDef
 * @return
 */
private ViewDefImpl buildDeptViewSessionDef(EntityDefImpl entityDef) {
 ViewDefImpl viewDef = new ViewDefImpl
 (oracle.jbo.server.ViewDefImpl.DEF_SCOPE_SESSION,
 "DynamicDeptViewDef");
 viewDef.setFullName(viewDef.getBasePackage() +
 ".dynamic." + viewDef.getName());
 System.out.println("ViewDef :" + viewDef.getFileName());
 viewDef.setUseGlueCode(false);
 viewDef.setIterMode(RowIterator.ITER_MODE_LAST_PAGE_FULL);
 viewDef.setBindingStyle(
 SQLBuilder.BINDING_STYLE_ORACLE_NAME);
 viewDef.setSelectClauseFlags(
 ViewDefImpl.CLAUSE_GENERATE_RT);
 viewDef.setFromClauseFlags(ViewDefImpl.CLAUSE_GENERATE_RT);

 viewDef.addEntityUsage("DynamicDeptUsage",
 entityDef.getFullName(), false, false);

 viewDef.addAllEntityAttributes("DynamicDeptUsage");
 /**
 * It resolves attribute definitions
 * with its entity bases.
 */
 viewDef.resolveDefObject();

 viewDef.writeXMLContents();
 viewDef.saveXMLContents();

 return viewDef;
}

Appendix

[13]

Step 3—creating a view object instance and adding it to the
application module
The following is the application module method that controls the creation of an
entity object and a view object, which we have seen in the preceding steps. This
method delegates the call to the appropriate routines for creating the view object
definition at runtime and generates a view object instance out of it. This will be
exposed to be used by the client. When you build a UI for a dynamic view object,
typically you drop this method as the method call activity in the task flow preceding
the page (view) displaying the dynamic UI.

//In application module implementation class

public class HRServiceAppModuleImpl extends ApplicationModuleImpl
implements HRServiceAppModule {

 //Dynamic view object instance name used in this e.g
 private static final String DYNAMIC_DETP_VO_INSTANCE =
 "DynamicDeptVO";
/**
 * This method generates dynmaic entity definition and view
 * object definition for
 * DEPARTTMENTS table and add it to AM instance
 */
public void buildDynamicDeptViewCompAndAddtoAM() {
 //Check if view definition exist for
 //DYNAMIC_DETP_VO_INSTANCE
 ViewObject internalDynamicVO =
 findViewObject(DYNAMIC_DETP_VO_INSTANCE);
 if (internalDynamicVO != null) {
 return;
 }
 //Build entity definition
 EntityDefImpl deptEntDef = buildDeptEntitySessionDef();
 //Build view object definition
 ViewDefImpl viewDef = buildDeptViewSessionDef(deptEntDef);
 //Add view object to application module
 addViewToPdefApplicationModule(viewDef);

}

/**
 * Adds the view definition to application module
 * @param viewDef

More on ADF Business Components and Fusion Page Runtime

[14]

 */
private void addViewToPdefApplicationModule(ViewDefImpl viewDef) {
 oracle.jbo.server.PDefApplicationModule pDefAM =
 oracle.jbo.server.PDefApplicationModule.findDefObject
 (getDefFullName());

 if (pDefAM == null) {
 pDefAM = new oracle.jbo.server.PDefApplicationModule();
 pDefAM.setFullName(getDefFullName());
 }

 pDefAM.setEditable(true);
 pDefAM.createViewObject(
 DYNAMIC_DETP_VO_INSTANCE, viewDef.getFullName());
 //Apply the changes to AM's PDef object
 pDefAM.applyPersonalization(this);
 //Write the changes to XML
 pDefAM.writeXMLContents();
 pDefAM.saveXMLContents();
 }
 //Other methods go here...
}

The preceding code snippet uses oracle.jbo.server.PDefApplicationModule to
store the changes made at runtime, so that it will be available across sessions. The
PDefApplicationModule implementation internally uses MDS to store the changes.
To make this example work, you may need to configure MDS for the application.
The following code snippet from adf-config.xml illustrates a sample configuration,
which can be used for testing the dynamic UI example (discussed in this section):

<adf-config ...
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000"
 xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/sessiondef"
 metadata-store-usage="mdsRepos"/>
 <namespace path="/persdef"
 metadata-store-usage="mdsRepos"/>
 <namespace path="/xliffBundles"
 metadata-store-usage="mdsRepos"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mdsRepos"

Appendix

[15]

 deploy-target="true" default-cust-store="true"/>
 </metadata-store-usages>
 </persistence-config>
 <cust-config>
 <match path="/">
 <customization-class name=
 "oracle.adf.share.config.SiteCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Dynamic read-only view object
In the previous section, we were talking about the APIs for building entity-based
view objects. This need not be the case always. You will build a SQL-based read-
only view object on the fly if the dynamic UI that you are building needs to simply
display the data without any edit capabilities. The following example illustrates the
APIs to be used for building view object definitions on the fly:

//In application module implementation class

//Dynamic view object instance name used in this e.g
private static final String DYNAMIC_DETP_VO_INSTANCE =
"DynamicDeptVO";
/**
 * This method defined in application module. It
 * generates dynamic view object definition
 * at runtime
 */
public void createSQLBasedDepartmentViewObject() {
 //Remove view object if already exists
 ViewObject vo = findViewObject(DYNAMIC_DETP_VO_INSTANCE);
 if (vo != null)
 vo.remove();

 // Create a new "com.packtpub.adfguide.DepartmentView"
 //view definition
 ViewDefImpl deptViewDef = new
 ViewDefImpl("com.packtpub.adfguide.DepartmentView");
 // Define the names and types of the view attributes
 deptViewDef.addViewAttribute("DepartmentId",
 "DEPARTMENT_ID", Integer.class);

More on ADF Business Components and Fusion Page Runtime

[16]

 deptViewDef.addViewAttribute("DepartmentName",
 "DEPARTMENT_NAME", String.class);
 deptViewDef.addViewAttribute("LocationId", "LOCATION_ID",
 Integer.class);
 // Define the SQL query that this view object will perform
 deptViewDef.setQuery("SELECT DEPARTMENT_ID," +
 "DEPARTMENT_NAME, LOCATION_ID FROM DEPARTMENTS");
 deptViewDef.setFullSql(true);
 deptViewDef.setBindingStyle(
 SQLBuilder.BINDING_STYLE_ORACLE_NAME);
 deptViewDef.resolveDefObject();

 // Create an instance of the new view definition named
 //"DynamicDeptVO "
 vo = createViewObject(DYNAMIC_DETP_VO_INSTANCE,
 deptViewDef);
}

Dynamic view object from the query statement
This is another approach for building a dynamic read-only view object. If
you want to quickly build read-only view objects at runtime by using the
SQL query statement, this is for you. In this case, the framework generates
the attribute definitions based on the database table definition. This approach
uses createViewObjectFromQueryStmt() defined on oracle.jbo.server.
ApplicationModuleImpl for creating the view object instances from the query
statement at runtime. Note that with this approach there will be a separate round
trip to the database for reading table metadata in order to build the view object
definition at runtime. An example is here:

//In application module implementation class

//Dynamic view object instance name used in this e.g
private static final String DYNAMIC_DETP_VO_INSTANCE =
"DynamicDeptVO";

/**
 * This method is defined in application module. It creates
 * view object from query statement
 */
public void createDynamicVOFromQuery() {
 //Remove view object if already exists
 ViewObject vo = findViewObject(DYNAMIC_DETP_VO_INSTANCE);
 if (vo != null)

Appendix

[17]

 vo.remove();
 String query = "SELECT Departments.DEPARTMENT_ID, " +
 " Departments.DEPARTMENT_NAME, " +
 " Departments.MANAGER_ID, " +
 " Departments.LOCATION_ID " +
 "FROM DEPARTMENTS Departments";
 //Creates DynamicDeptVO instance from the query
 vo = createViewObjectFromQueryStmt(
 DYNAMIC_DETP_VO_INSTANCE,
 query);
}

Building a binding definition for the dynamic
view object
In the last section, we learned how to build a dynamic data model to be used in the
UI. The next step in building a dynamic UI is to define the data bindings for the data
model. You cannot build the data bindings by dropping the view object instance on
to the page, because the view object instance that we use in the page does not exist at
design time.

To add a binding definition for the dynamic view object, open the page definition file
in the overview editor and then add the <iterator> binding definition as well as the
<tree> binding definition. You can even manually enter the binding definitions by
switching to the Source tab of the page definition file's editor window. You must be
extra careful while doing so.

The following example illustrates the <iterator> definition for DynamicDeptVO. The
DynamicDeptVO view object refers the view object instance added to the application
module at runtime. In this example, the tree binding definition contains a dummy
node, which is required as the framework expects at least one child node entry for
the tree binding.

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="DynamicDeptVO"
 DataControl="HRServiceAppModuleDataControl"
 id="DynamicDeptsIterator"/>
</executables>
<bindings>
 <tree IterBinding="DynamicDeptsIterator" id="DynamicDepts">
 <nodeDefinition Name="Dummy"></nodeDefinition>
 <!-- Dummy node is just a place holder node def -->
 </tree>

More on ADF Business Components and Fusion Page Runtime

[18]

</bindings>

Appendix

[19]

HRServiceAppModuleDataControl referred in the preceding iterator definition is
defined in the DataBindings.cpx file as follows:

<Application ...> ...
 <dataControlUsages>
 <BC4JDataControl id="HRServiceAppModuleDataControl"
 Package="com.packtpub.adfguide.model"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true"
 SupportsFindMode="true" SupportsRangesize="true"
 SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="HRServiceAppModuleLocal" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

Building a dynamic table UI component
The basic infrastructure for building a model-driven dynamic UI is in place by now.
There are two solutions for rendering the UI for a dynamic model:

•	 ADF Faces offers dynamic UI components for rendering the data collection
returned by the dynamic view object

•	 Another option is to use the af:iterator or af:forEach tag to iterate over a
collection of objects and render the appropriate UI components dynamically

We are not discussing the dynamic UI component in this appendix. Refer to the
Oracle Technology Network website to learn more about dynamic ADF Faces
components (available online at http://www.oracle.com/technetwork/
developer-tools/adf/overview/index.html).

The following is an example illustrating the usage of <af:forEach> for rendering the
table UI at runtime. This uses the dynamic data binding definition that we created
in the preceding section. In the following ADF Faces code snippet, af:forEach
evaluates the EL specified for value attribute to identify the attribute definitions
associated with the dynamic view object that we created in the previous step.
Then, for each attribute present in the dynamic view object, af:forEach generates
the af:column (along with af:inputText) element and adds it to the af:table
component. The attribute values for dynamically added components are
specified through EL.

More on ADF Business Components and Fusion Page Runtime

[20]

<af:table rows="#{bindings.DynamicDepts.rangeSize}"
 fetchSize="#{bindings.DynamicDepts.rangeSize}"
 emptyText="#{bindings.DynamicDepts.viewable ?
 'No data to display.' : 'Access Denied.'}" var="row"
 rowBandingInterval="0"
 value="#{bindings.DynamicDepts.collectionModel}"
 selectedRowKeys=
 "#{bindings.DynamicDepts.collectionModel.selectedRow}"
 selectionListener=
 "#{bindings.DynamicDepts.collectionModel.makeCurrent}"
 rowSelection="single" id="t1"
 editingMode="clickToEdit">
 <af:forEach
 items="#{bindings.DynamicDeptsIterator.attributeDefs}"
 var="def">
 <af:column headerText="#{def.name}" sortable="true"
 sortProperty="#{def.name}" id="c1">
 <af:inputText
 value="#{row.bindings[def.name].inputValue}"
 maximumLength=
 "#{row.bindings[def.name].hints[def.name].precision}"
 id="fld1"/>
 </af:column>
 </af:forEach>
</af:table>

Using the method call activity to initialize the
model for the dynamic UI
Defining an appropriate navigation case for the dynamic UI is equally important as
building dynamic business components and a UI for displaying them. When you use
dynamic business components for building a UI at runtime, you must make sure that
the underlying business components are ready, before displaying them on the UI.
A practical solution for such a use case is to make use of the method call activity in
a task flow to hold the initialization logic for the UI. The following navigation case
illustrates this idea:

Appendix

[21]

In this example, the method activity buildDynamicDeptViewCompAndAddtoAM builds
the dynamic view object component backed up by the entity object and adds it to the
application module to be used by the client. This method call is marked as a default
activity for the task flow. The business components created through the method call
activity are used by the succeeding view activity in the task flow, which is marked as
dynamicDeptUI in the diagram.

At runtime, when you execute this task flow,
buildDynamicDeptViewCompAndAddtoAM creates a view object dynamically and
navigates to the dynamicDeptUI.

dynamicDeptUI displays the data collection returned by the dynamically created
view object component.

A working example demonstrating the APIs for building dynamic
business components and a dynamic UI can be found in the example code
available with this book. To access the example code for the dynamic UI,
open the ADFDevGuideAppendixSamples workspace in JDeveloper
and look for dynamicUIMain.jsf in the ViewController project.

Building composite view objects
The composite view objects help you to combine hierarchical results from two or
more master detail view objects linked through a view link into a single composite
view with flattened query retrieving the same result set. This feature is used by
various analytical and data integration tools such as Oracle Business Intelligence
(OBIEE) and Oracle Data Integration (ODI).

For example, consider the Department and Employee hierarchies built using the
Department and Employee view objects, linked through a view link. You can build a
composite view object at runtime by combining these two view objects as shown in
the following code snippet:

//In application module implementation class

public void createCompositeDeptEmpVO() {

 // createCompositeViewDef is available in
 //ApplicationModuleImpl
 //Step 1 -Build Composite VO
 ViewDefImpl compVODef = (ViewDefImpl)
 createCompositeViewDef

More on ADF Business Components and Fusion Page Runtime

[22]

 ("DeptEmpDetailCompVO", "model.DeptEmpDetail");
 //Step 2- Add existing DepartmentVO to the composite VO
 compVODef.addViewUsage("Dept", "model.DepartmentVO");
 //Step 3- Add existing EmployeeVO to the composite VO
 //with view link
 compVODef.addViewUsage("Emp", "model.EmployeeVO",
 "model.DeptToEmpViewLink", "EmployeeVO", "Dept");

 //Step 4 -Include all attributes from Dept
 compVODef.addAllRowAttributes("Dept");

 //Step 5 -Add specifc attributes from Emp to avoid name
 //collision as some might have already added in Step 4
 compVODef.addRowAttribute("EmployeeId", "Emp",
 "EmployeeId");
 compVODef.addRowAttribute("FirstName", "Emp",
 "FirstName");
 compVODef.addRowAttribute("LastName", "Emp", "LastName");

 //Give a different alaiase name to avoid name conflict
 compVODef.addRowAttribute("EmpDepId", "Emp",
 "DepartmentId");
 compVODef.addRowAttribute("HireDate", "Emp", "HireDate");

 // Step 6- Define a view criteria on composite VO
 ViewCriteria vc = compVODef.createViewCriteria();
 ViewCriteriaRow vcr = vc.createViewCriteriaRow();
 ViewCriteriaItem vcItem =
 vcr.ensureCriteriaItem("HireDate");
 vcItem.setOperator(">=");
 vcItem.setValue("2008-02-13");
 vc.add(vcr);
 compVODef.putViewCriteria("DeptEmpDetailVC", vc);

 // Step 6 - Set Order By clause, if needed
 compVODef.setOrderByClause("DepartmentName, FirstName");

 // Step 7 - Resolve the definition and save it
 compVODef.resolveDefObject();
 //Write to XML
 compVODef.writeXMLContents();
 //Save it to hard disk
 compVODef.saveXMLContents();

Appendix

[23]

 //Create the composite VO instance
 ViewObjectImpl compDeptEmpVO = (ViewObjectImpl)
 createViewObject("DeptEmpDetail",
 compVODef.getFullName());

 //Step 8 - Apply VC and execute
 compDeptEmpVO.getViewCriteriaManager().
 setApplyViewCriteriaName("DeptEmpDetailVC");
 //Specify access mode
 compDeptEmpVO.setForwardOnly(true);

 //Test the composite view object
 compDeptEmpVO.executeQuery();
 while (compDeptEmpVO.hasNext()) {
 Row r = compDeptEmpVO.next();
 // Process current row as per usecase
 }
}

In the preceding example, the resulting composite (or flattened) view object
DeptEmpDetail includes the data from both the Department and Employee view
objects connected through an inner join. The joining criteria used in the flattened
query for the composite view object is derived by using the view link definitions
for the view objects. The client can include all or a subset of attributes from the
participant view objects based on the use case requirement. It is the calling client's
responsibility to provide attribute alias names to avoid name collisions by providing
proper aliases names when attributes are added, using addAllRowAttributes on
oracle.jbo.server.ViewDefImpl.

When a client builds composite view objects, passing multiple view objects
programmatically, the following points are applicable:

•	 Only top-level and entity-based view objects can be used for building the
composite view objects

•	 View objects used for building the composite view objects should be based
on either normal SQL mode or declarative SQL mode

•	 View objects used for building the composite view objects can have the
multiple, associated, or reference only entity usages

•	 The composite view object inherits the attribute-level hints from the
underlying entity objects

More on ADF Business Components and Fusion Page Runtime

[24]

Building application modules with no database
connection
The requirement for building an application module with no database connection
arises when your application module contains only programmatic entity objects and
view objects, which do not use a database as their data store. To build an application
module without any database connection, you may need to customize the core
framework classes used by the application module runtime. The high-level steps are
as follows:

1.	 Build an application module with a dummy database connection. This is
because JDeveloper will not allow you to build an application module without
using any database connection. You can delete it once you configure the
application module to use the following custom components. Provide custom
implementations for these components used by the application module:

°° Pool class name: You can sub-class the oracle.jbo.common.
ampool.ApplicationPoolImpl class to add custom logic, and
supply it to the application module. You can turn off the passivation
support through this custom implementation.

°° Connection strategy class: You can sub-class oracle.jbo.common.
ampool.DefaultConnectionStrategy to add custom logic, and
supply it to the application module. You can use this custom
implementation to set the configuration properties jbo.dofailover
and RequiresConnection to false for the newly created application
module instances.

°° Session class: You can sub-class oracle.jbo.server.SessionImpl
to add the custom logic, and supply it to the application module.
This custom implementation can be used for supplying custom
TransactionHandlerFactory. This factory class is used for
providing a custom TransactionHandler.

2.	 Configure the application module to use the preceding implementations by
overriding the corresponding properties in the bc4j.xcfg file. Here is an
example:
<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/
configuration">
 <AppModuleConfigBag ApplicationName=
 "com.packtpub.nondb.NonDBAppModuleService">
 <AppModuleConfig DeployPlatform="LOCAL"
 jbo.project=
 "com.packtpub.adfguide.model.nondb.NonDBModel"
 name="NonDBAppModuleService"

Appendix

[25]

 SessionClass=
 "com.packtpub.nondb.CustomSessionImpl"
 ApplicationName=
 "com.packtpub.nondb.NonDBAppModuleService">
 <AM-Pooling
 jbo.ampool.connectionstrategyclass=
 "com.packtpub.nondb.CustomConnectionStrategy"
 PoolClassName=
 "com.packtpub.nondb.CustomApplicationPoolImpl"/>
 <Database jbo.TypeMapEntries="OracleApps"
 jbo.locking.mode="optimistic"/>
 <Security AppModuleJndiName=
 "com.packtpub.nondb.NonDBAppModuleService"/>
 <Custom JDBCDataSource="java:comp/env/jdbc/HRDS"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

A working sample for an application module without any database
connection can be found in the example code available with this book. To
access this sample code, open the ADFDevGuideCh6HRModel work space
in JDeveloper and look for the NonDBModel project.

Looking up the UI components from the
component tree
The following code snippet illustrates how you can use a visitor pattern for getting
hold of a specific UI component from the component tree at runtime. This is useful if
you need to look up specific UI components in the component tree from the managed
bean code. The following code snippet in a managed bean looks up for the af:query
component with the client ID qryId1 in the component tree. To learn more, refer to
the API documentation available online at http://javaserverfaces.java.net/
nonav/docs/2.0/javadocs/javax/faces/component/UIComponentBase.html.

//In managed bean class

private transient RichQuery deptQuery;

//This method gets the component reference for af:query with
//client id qryId1
public RichQuery getDeptQuery() {

More on ADF Business Components and Fusion Page Runtime

[26]

 if (deptQuery == null){
 //'qryId1' – client Id for af:query component present
 // in JSF
 findRichQueryInView("qryId1");
 }
 return deptQuery;
}

/**
 *Finds the Query Component using the visitor pattern
 * @param id
 */
private void findRichQueryInView(String id) {

 FacesContext fctx = FacesContext.getCurrentInstance();
 UIViewRoot root = fctx.getViewRoot();
 root.invokeOnComponent(fctx, id, new ContextCallback() {
 public void invokeContextCallback(FacesContext
 facesContext, UIComponent uiComponent) {
 deptQuery = (RichQuery)uiComponent;
 }
 });
}

Summary
In this appendix, we discussed the lifecycle for a page with regions (task flow),
transaction management in Fusion web application, dynamic business
components, application modules with no database connection, and the
dynamic UI creation techniques.

