
Setup Procedures: Steps to
Follow

This appendix first takes us through some pre-setup checks that we need to do, to
ensure that the tables we want to replicate are suited for Q replication. Next, we
go through various scenarios and give step-by-step instructions. If a command in a
scenario is the same as in a previous scenario, then it is not repeated, but a reference
is made to the previous command.

Tools available to help set up
Q replication
This section looks at the tools available to help set up the three layers of
Q replication.

The database layer
The DB2 Control Center or Optim Data Studio can be used to create the databases,
enable archive logging, and create the source/target tables.

The Setup Procedures: Steps to Follow

[2]

The WebSphere MQ layer
There are a couple of aids to setting up the WebSphere MQ layer.

Firstly, there is an article on the IBM developerWorks website called Graphical tool
for generating WebSphere MQ setup scripts for Q replication and event publishing, which
describes a free downloadable tool. This tool generates the MQ script that we need
to define the queues from a screen where we type in the queue names. There is also
a Sample entries button, which will give us some default queue names if we are
unsure of the names we want to use. The tool is a series of four PDF files, which we
can open and print but cannot save. The four scenarios covered are:

•	 Unidirectional replication (two Queue Managers)
•	 Bidirectional or peer-to-peer (P2P) replication (two Queue Managers)
•	 Event publishing (two Queue Managers)
•	 Event publishing (one Queue Manager)

The following screenshot shows the PDF file for unidirectional replication:

And if we click the Sample entries button, the queue names are filled in for us.

Appendix

[3]

Secondly, for DB2 9.7 onwards, there is an MQ Script Generator built into the
Replication Center, which can be accessed by right-clicking on the Q Capture Servers
folder and selecting MQ Script Generator as shown in the following screenshot:

The Setup Procedures: Steps to Follow

[4]

We have a choice of five possible scenarios, as shown in the following screenshot:

This opens up a PDF file, and we have to follow the instructions in there.

The Q replication layer
We can use ASNCLP commands to set up the Q replication layer. We must not
forget the Replication Center when it comes to setting up the Q replication layer.
From here, we can create the control tables, create Replication Queue Maps, and Q
subscriptions and administer Q Capture and Q Apply. There is also the possibility of
writing SQL to set up the Q replication layer, but this should be avoided whenever
possible. Use the Replication Center the first time you are setting up replication, and
once you are happy with the principles use ASNCLP commands.

Pre-setup evaluation
There are certain issues that need to be considered when planning a Q replication
scenario to make sure that there are no surprises at the end of the process. Following
is a checklist of points that we have come across and in what situations they are an
issue. All candidate tables should be checked for:

•	 Referential integrity
•	 Triggers
•	 Identity columns
•	 Sequence objects
•	 Absence of unique key
•	 Applications processing different rows in the same table

Let's look at each of these in more detail.

Appendix

[5]

Referential integrity
Replication scenario: All.

All source tables that are linked through referential integrity must use the same
Replication Queue Map.

Triggers
Replication scenario: Bidirectional, P2P.

We need to analyze any trigger that is on a source table to understand which tables
are touched by the trigger and what is the impact of the trigger's action. Then we can
determine if we should:

•	 Leave it alone as is
•	 Remove it
•	 Drop and recreate it to reflect replication's behavior and continue to have the

correct impact on the data

If we need to modify the trigger, it is usually to validate if the update comes from Q
Apply or from the local application. If it comes from Q Apply then we do not want to
fire the trigger. We can validate this with SQL using the CURRENT USER special registry
parameter. Say the user ID used to run Q Apply is QREPADM, then we can use the WHEN
portion of the trigger's syntax to only fire if CURRENT USER NOT = 'QREPADM'.

Identity columns
Identity columns and Sequence objects (see next topic) can be problematic when we
bring replication into the mix. These objects are automated in sequence or through
identity generators. This functionality is commonly used in order to relieve the
application from the responsibility of maintaining the next value, next value plus
one, and so on.

The definition of identity columns, can include a start (or seed), an increment (skip
how many numbers), and a maximum value. The maximum is usually way out of
reach. Other characteristics include whether these values will always be generated by
DB2 or if the user/application can provide a number.

We have two options for identity columns: GENERATED ALWAYS AS IDENTITY or
GENERATED BY DEFAULT AS IDENTITY.

The Setup Procedures: Steps to Follow

[6]

The GENERATED ALWAYS AS IDENTITY clause causes a problem and will result in the
replication definition process (ASNCLP or Replication Center) to fail. The message is
misleading and mentions missing target column map. The real problem is that with
bidirectional replication the value will sometimes come from the other system and
be delivered by Q Apply. If the definition of the identity column is ALWAYS then Q
Apply could not insert the complete row with the same values as the source.

An example of a problematic identity column (inv_num) definition would be:

CREATE TABLE hmtab
(inv_num INT NOT NULL UNIQUE GENERATED ALWAYS AS IDENTITY
(START WITH 20, INCREMENT BY 1, NO CACHE),
item CHAR (100))

We can use the following query to check if we have any tables with identity columns
which were defined as GENERATED ALWAYS AS IDENTITY:

db2 "SELECT SUBSTR(tabschema,1,10) AS tabschema, SUBSTR(tabname,1,10) AS
tabname, identity, generated FROM syscat.columns WHERE identity = 'Y' AND
generated = 'A' "

The identity column can contain the following values:

•	 N: Not an identity column.
•	 Y: Identity column.

The generated column can contain the following values:

•	 A: Column value is always generated.
•	 D: Column value is generated by default.
•	 Blank: Column is not generated.

Any such tables need to be altered to GENERATED BY DEFAULT AS IDENTITY as follows:

ALTER TABLE <table-name> ALTER COLUMN <column-name> SET GENERATED BY
DEFAULT

Altering tables to be GENERATED BY DEFAULT AS IDENTITY will have no immediate
impact on any of the applications behavior and will continue to generate values (in
the right order). However, it will enable Q Apply to successfully bring over the entire
newly inserted row at the source including the identity column value from the source.

We do not have to worry about the cache setting, which can be:
CACHE <n> or NO CACHE.

Appendix

[7]

Sequence objects
The SEQUENCE function allows us to define a counter which is not dependent on any
particular column in a table, but is defined for the database in which it is created.
This is different from an identity column, which is table/column dependent. We can
specify various options when we define the sequence—a start value, an increment
value, and whether we want values cached by DB2 or not (or accept the defaults).
We can also specify a maximum value and a minimum value, and whether we want
to cycle back to the beginning when we hit the maximum/minimum value.

Following line shows an example of creating a sequence (called hm):

CREATE SEQUENCE hm AS INTEGER START WITH 10 INCREMENT BY 2

Replication relies heavily upon the presence of a unique or primary key on each
table involved in replication. This key column is used by Q Apply to correctly match
updated rows from the source to target.

We try to avoid scenarios where applications at either site might produce duplicate
keys as this would cause an artificial conflict, but still result in data loss.

A common strategy is to seed each server with a different value and then skip values
in a way to avoid the same number on any server. For example with two servers—SY1
and SY2:

•	 SY1: Start with 0 increment by 2.
•	 SY2: Start with 1 increment by 2.

The result is that SY1 will have all even values, and SY2 will have all odd values.

With three servers—SY1, SY2, and SY3, the starting and incremental values are:

•	 SY1: Start with 0 increment by 3.
•	 SY2: Start with 1 increment by 3.
•	 SY3: Start with 2 increment by 3.

Absence of a unique key
If we do not have a primary key, unique constraint, or unique index on the source
table, then Q Apply will automatically create a unique index for the new target table
that is based on all valid, subscribed source columns.

If we have not specified a method for establishing uniqueness at the target, then Q
Apply uses a primary key, unique constraint, or unique index at the target to enforce
the uniqueness of each row when it applies the row to target tables or parameters in
stored procedures.

The Setup Procedures: Steps to Follow

[8]

Replicating views
We cannot replicate views using Q replication.

Applications processing different rows in the
same table
Replication scenario: Bidirectional.

In a bidirectional scenario, we need to evaluate whether conflicts are possible from
an application point of view. This is covered in the The different types of
Q replication—Bidirectional replication section of Chapter 1, Q Replication Overview,
which discussed the two different types of bidirectional replication, one where there
is an active/passive setup and the second type where applications are updating both
sides of the bidirectional setup at the same time—an active/active setup.

First steps—common to all scenarios
This section details the common first steps for all scenarios.

Database creation
In each scenario, we will use either one, two, three, or four databases called DB2A,
DB2B, DB2C, and DB2D. In all scenarios the required number of databases should be
created as shown next. The instructions in each scenario specify how many
databases to create.

The user id used to set up replication must have write authority to a directory called
c:\temp, which is the directory pointed to by the DB2 BACKUP command.

In the following sections, we talk about source and target databases. The difference
between the two is that source databases have archive logging switched on, whereas
this is not required for target databases.

A source database (DB2A) can be created using the DB2 SYSA_crt_db2a.sql
script file:

CONNECT RESET;
DROP DB db2a;
CREATE DB db2a;
CONNECT TO db2a;
CREATE TABLE eric.t1(c1 INT NOT NULL, c2 INT, c3 CHAR(10));
ALTER TABLE eric.t2 ADD CONSTRAINT t1p PRIMARY KEY (c1);

Appendix

[9]

CREATE TABLE eric.t2(c1 INT NOT NULL, c2 INT, c3 CHAR(10));
ALTER TABLE eric.t2 ADD CONSTRAINT t2p PRIMARY KEY (c1);

CREATE TABLE eric.t3(c1 INT NOT NULL, c2 INT, c3 CHAR(10));
ALTER TABLE eric.t3 ADD CONSTRAINT t3p PRIMARY KEY (c1);

CONNECT RESET;
UPDATE DB CFG FOR db2a USING logarchmeth1 disk:c:\temp;
BACKUP DATABASE db2a TO c:\temp;

From CLP-A, run the file as:

$ db2 -tvf SYSA_crt_db2a.sql

A target database (DB2B) can be created using the DB2 SYSB_crt_db2b.sql script file
(note that we are switching on archive logging, but this is not necessary):

CONNECT RESET;
DROP DB db2b;
CREATE DB db2b;
UPDATE DB CFG FOR db2b USING logarchmeth1 disk:c:\temp;
BACKUP DATABASE db2b TO c:\temp;

From CLP-B, run the file as:

$ db2 -tvf SYSB_crt_db2b.sql

We found that for P2P four-way replication, depending on the value of the database
manager configuration parameter maxagents, we may have to increase it. We
increased it from the default value of 200 to 2000 (otherwise we might get
SQL1226N errors).

For each database that we create, we need to open a DB2 CLP session.

Setting up a password file

If we are setting up replication between databases on different machines,
then we need to set up a password file on each Q Apply server. Refer to
the The password file section of Chapter 6, Administration Tasks, for
details on how to initialize and populate a password file.

The Setup Procedures: Steps to Follow

[10]

Queue Manager processing
Depending on the scenario, the Queue Managers QMA, QMB, QMC, and QMD should be
created. Refer to the Create/start/stop a Queue Manager section of Chapter 4, WebSphere
MQ for the DBA, for a description of how to create a Queue Manager.

Listeners and Channels
Consider the following diagram, which shows a P2P four-way setup. Each Queue
Manager in a communicating pair will have one Listener, and there will be a Channel
to the Queue Manager and a Channel from the Queue Manager to the other Queue
Manager in the pair. It shows the start Listener batch file names and the start Channel
batch file names for all four Queue Managers which are used in this appendix.

Starting Q Capture and Q Apply
To start Q Capture and Q Apply, follow the instructions in the Q Capture
administration—Starting Q Capture, Starting Q Apply sections of Chapter 6.

Appendix

[11]

Text file creation for the amqsput command
To test the WebSphere layer, we need to create various text files, which will be used
as input files to the amqsput command. For each filename, populate the file with the
corresponding test<x> word. So for example, SYSA_QMA_TEST1.TXT file will contain
test1 and SYSB_QMB_TEST2.TXT will contain test2 and so on.

Contents of text files for the amqsput command

File Uni EP Bi P2P2W P2P3W P2P4W
SYSA_QMA_TEST1.TXT X X X X X
SYSA_QMA_TEST2.TXT X X X X
SYSA_QMA_TEST3.TXT X X
SYSA_QMA_TEST4.TXT X X
SYSA_QMA_TEST5.TXT X
SYSA_QMA_TEST6.TXT X
SYSB_QMB_TEST2.TXT X
SYSB_QMB_TEST4.TXT X X
SYSB_QMB_TEST3.TXT X X
SYSB_QMB_TEST5.TXT X
SYSB_QMB_TEST6.TXT X
SYSB_QMB_TEST7.TXT X X
SYSB_QMB_TEST8.TXT X X
SYSB_QMB_TEST9.TXT X
SYSB_QMB_TEST10.TXT X
SYSB_QMB_TEST11.TXT X
SYSB_QMB_TEST12.TXT X
SYSC_QMC_TEST9.TXT X
SYSC_QMC_TEST10.TXT X
SYSC_QMC_TEST11.TXT X
SYSC_QMC_TEST12.TXT X
SYSC_QMC_TEST13.TXT X
SYSC_QMC_TEST14.TXT X
SYSC_QMC_TEST15.TXT X
SYSC_QMC_TEST16.TXT X
SYSC_QMC_TEST17.TXT X
SYSC_QMC_TEST18.TXT X
SYSD_QMD_TEST19.TXT X

The Setup Procedures: Steps to Follow

[12]

File Uni EP Bi P2P2W P2P3W P2P4W
SYSD_QMD_TEST20.TXT X
SYSD_QMD_TEST21.TXT X
SYSD_QMD_TEST22.TXT X
SYSD_QMD_TEST23.TXT X
SYSD_QMD_TEST24.TXT X

We will put the contents of these files onto the appropriate Send Queues. The
amqsput command was discussed in the WebSphere MQ sample programs—server
section of Chapter 4. In the scenarios ,we show Windows examples of the batch files.

The following diagram shows the Queues and text files for two scenarios.

For unidirectional replication:

For bidirectional replication:

Appendix

[13]

So now let's move on to look at the various scenarios.

Unidirectional replication
The following diagram shows the setup that we will use:

We will start with a test table ERIC.T1 which only exists on DB2A—Q Apply will
create its equivalent called FRED.T1 on DB2B.

The Setup Procedures: Steps to Follow

[14]

The database layer
We need to create one source database DB2A and one target database DB2B. Follow
the instructions in the First steps—Database creation section.

We have now completed the database layer and can proceed to the
WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB. Follow the
instructions in the First steps—Queue Manager processing section.

The queues we need on QMA for unidirectional replication are in
SYSA_QMA_MQDEFS_UNI_AB.TXT file, and are shown next:

DELETE QLOCAL(CAPA.ADMINQ)
PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ
FOR CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ)
+

REPLACE +

DEFINE QREMOTE(CAPA.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPA.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

Appendix

[15]

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMA') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL
FROM QMB')

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_UNI_BA.TXT

The Setup Procedures: Steps to Follow

[16]

The queues we need on QMB for unidirectional replication are in
SYSB_QMB_MQDEFS_UNI_BA.TXT file, and are shown next:

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.
QUEUE.QMB) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMB') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QLOCAL(CAPA.TO.APPB.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPB FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

Appendix

[17]

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_UNI_BA.TXT

Starting the Listeners
To start the Listeners for QMA and QMB, follow the instructions in the MQ Listener
management—Defining/Starting an MQ Listener section of Chapter 4.

Starting the Channels
To start the Channels for QMA and QMB, follow the instructions in the MQ Channel
management—To start a Channel section of Chapter 4.

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

We will start by putting test messages onto each system using the amqsput command
and then retrieving them using the amqsget command.

The Setup Procedures: Steps to Follow

[18]

The put message file is called SYSA_QMA_TEST1.TXT and its contents are described in
First steps—Text file creation for the amqsput command section. The batch file is called
SYSA_QMA_TESTP_UNI_AB.BAT and contains:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPB.
SENDQ.REMOTE QMA < SYSA_QMA_TEST1.TXT

From CLP-A, run the file as:

$ SYSA_QMA_TESTP_UNI_AB.BAT

The put message file for QMB is called SYSB_QMB_TEST2.TXT and the batch file is
called SYSB_QMB_TESTP_UNI_BA.BAT and contains:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST2.TXT

From CLP-B, run the file as:

$ SYSB_QMB_TESTP_UNI_BA.BAT

Once we have put the test messages onto each system, we can retrieve them.

The get message batch file for QMA is called SYSA_QMA_TESTG_UNI_BA.BAT
and contains:

@ECHO This takes 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ QMA

@ECHO You should see: test2

From CLP-A, run the file as:

$ SYSA_QMA_TESTG_UNI_BA.BAT

The get message batch file for QMB is called SYSB_QMB_TESTG_UNI_AB.BAT
and contains:

@ECHO This takes 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPB.
RECVQ QMB

@ECHO You should see: test1

From CLP-B, run the file as:

$ SYSB_QMB_TESTG_UNI_AB.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

Appendix

[19]

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections cover the steps to create the control tables, the Replication
Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Q subscription

Creating Q Capture control tables on DB2A
Follow the instructions in the Common Q replication tasks—Creating or dropping Q
Capture control tables on DB2A section of Chapter 5, The ASNCLP Command Interface.

Creating Q Apply control tables on DB2B
Follow the instructions in the Common Q replication tasks—Creating or dropping Q
Apply control tables on DB2B section of Chapter 5.

Creating a Replication Queue Map from DB2A
to DB2B
Follow the instructions in the Queue Map maintenance—Creating a Replication Queue
Map section of Chapter 5.

Creating a Q subscription
Follow the instructions in the Creating Q subscriptions and Publications—Q subscription
for unidirectional replication section of Chapter 5.

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A
To start Q Capture, follow the instructions in the Q Capture administration—Starting
Q Capture section of Chapter 6.

The Setup Procedures: Steps to Follow

[20]

Starting Q Apply on DB2B
To start Q Apply, follow the instructions in the Q Apply administration—Starting Q
Apply section of Chapter 6.

Testing replication
We are now in a position to test the unidirectional replication setup. We can insert a
record into ERIC.T1 on DB2A and check that it is replicated to FRED.T1 on DB2B.

From CLP-A, issue:

$ db2 "insert into eric.t1 values (1,1,'H')"

From CLP-B, issue:

$ db2 "select * from fred.t1"

C1 C2 C3
----------- ----------- ----------
 1 1 H
 1 record(s) selected.

We should see one record in fred.t1 on DB2B.

We can see that the unidirectional Q replication setup is working.

Bidirectional replication
The following diagram shows the setup that we will use:

We will start with a test table ERIC.T1 which only exists on DB2A—Q Apply will
create its equivalent called FRED.T1 on DB2B.

Appendix

[21]

The database layer
We need to create two source databases called DB2A and DB2B—follow the
instructions in the First steps—Database creation section.

We now have the database layer defined and can proceed to the WebSphere
MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB—follow the
instructions in the First steps—Queue Manager processing section.

We now need to create the queues that we need for this type of replication. Note
that the queues we need for bidirectional replication are the same as for P2P
two-way replication.

The queues we need for QMB are in SYSB_QMB_MQDEFS_BIP2P2W_AB.TXT file, and are
shown next:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR CAPA
CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPB.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPA FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

The Setup Procedures: Steps to Follow

[22]

*

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA)

+

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMA') +

*

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

Appendix

[23]

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPA.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB')
+

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

From CLP-A, issue:

$ runmqsc QMA < SYSA_QMA_MQDEFS_BIP2P2W_AB.TXT

The queues we need for QMB are in SYSB_QMB_MQDEFS_BIP2P2W_AB.TXT file, and
are shown next:

DELETE QLOCAL(CAPB.ADMINQ) PURGE

DEFINE QLOCAL(CAPB.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR CAPB
CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFINE QLOCAL(CAPA.TO.APPB.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE
- APPB FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

The Setup Procedures: Steps to Follow

[24]

DEFPSIST(YES)

DELETE QLOCAL(CAPB.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPB.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPB CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMB) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMB') +

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ
FOR CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

Appendix

[25]

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPB.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPB.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_BIP2P2W_AB.TXT

Starting the Listeners
To start the Listeners, follow the instructions in the The WebSphere MQ layer—Start
the Listeners section.

Starting the Channels
To start the Channels, follow the instructions in the The WebSphere MQ layer—Start
the Channels section.

The Setup Procedures: Steps to Follow

[26]

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

We will start by putting test messages onto each system using the amqsput command
and then retrieving them using the amqsget command.

The put message batch file for QMA is called SYSA_QMA_TESTP_BIP2P2W.BAT
and contains:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPB.
SENDQ.REMOTE QMA < SYSA_QMA_TEST1.TXT
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMA < SYSA_QMA_TEST2.TXT

From CLP-A, run the file as:

$ SYSA_QMA_TESTP_BIP2P2W.BAT

The put message file for QMB is called SYSB_QMB_TESTP_BIP2P2W.BAT and contains:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.TO.APPA.
SENDQ.REMOTE QMB < SYSB_QMB_TEST3.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST4.TXT

From CLP-B, run the file as:

$ SYSB_QMB_TESTP_BIP2P2W.BAT

Once we have put the test messages onto each system, we can retrieve them.

The get message file for QMA is called SYSA_QMA_TESTG_BIP2PW.BAT and contains:

@echo The amqsget program take 15 seconds to run
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ QMA

@ECHO You should see above: test4

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPA.
RECVQ QMA

@ECHO You should see above: test3

From CLP-A, run the file as:

$ SYSA_QMA_TESTG_BIP2P2W.BAT

Appendix

[27]

The get message file for QMB is called SYSB_QMB_TESTG_BIP2PW.BAT and contains:

@echo The amqsget program take 15 seconds to run
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPB.
RECVQ QMB

@ECHO You should see above: test1

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.ADMINQ QMB

@ECHO You should see above: test2

From CLP-B, run the file as:

$ SYSB_QMB_TESTG_BIP2P2W.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer, and can proceed to the
Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps and the Q subscription. The tasks are:

•	 Creating the Q Capture and Q Apply tables on DB2A
•	 Creating the Q Capture and Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2B to DB2A
•	 Creating a Q subscription

Creating Q Capture/Q Apply control tables on DB2A
Follow the instructions in the Common Q replication tasks—Creating control tables in the
same database section of Chapter 5, The ASNCLP Command Interface.

Creating Q Capture/Q Apply control tables on DB2B
Follow the instructions in the Common Q replication tasks—Creating control tables in the
same database section of Chapter 5.

The Setup Procedures: Steps to Follow

[28]

Creating a Replication Queue Map for DB2A
to DB2B
Follow the instructions in the Queue Map maintenance—Creating a Replication Queue
Map section of Chapter 5.

Creating a Replication Queue Map for DB2B
to DB2A
Follow the instructions in the Queue Map maintenance—Creating a Replication Queue
Map section of Chapter 5.

Creating a bidirectional Q subscription
Follow the instructions in the Creating Q subscriptions and Publications—Q subscription
for bidirectional replication section of Chapter 5.

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A and DB2B
Follow the instructions in the Q Capture administration—Starting Q Capture section of
Chapter 6, Administration Tasks.

Wait for both Q Captures to be up and running before starting the Q Applys.

Starting Q Apply on DB2A and DB2B
Follow the instructions in the Q Apply administration—Starting Q Apply section
of Chapter 6.

Testing replication
We are now in a position to test the bidirectional replication setup. We can insert a
record into ERIC.T1 on DB2A and check that it is replicated to FRED.T1 on DB2B.

From CLP-A, issue:

$ db2 "insert into eric.t1 values (1,1,'H')"

From CLP-B, issue:

$ db2 "select * from fred.t1"

Appendix

[29]

C1 C2 C3
----------- ----------- ----------
 1 1 H
 1 record(s) selected.

We should see one record in FRED.T1 on DB2B.

And we can insert a record into FRED.T1 on DB2B and check that it is replicated to
ERIC.T1 on DB2A.

From CLP-B, issue:

$ db2 "insert into fred.t1 values (2,1,'J')"

From CLP-A, issue:

$ db2 "select * from eric.t1"

C1 C2 C3
----------- ----------- ----------
 1 1 H
 2 1 J
 2 record(s) selected.

We should see two records in ERIC.T1 on DB2A.

We can see that the bidirectional Q replication setup is working.

P2P two-way replication
The setup for P2P two-way is nearly identical to the setup for bidirectional replication.
The only difference between them is the way the Q subscription is defined—for
bidirectional, we specify subtype b and for P2P, we specify subtype p. The setup we
will use is shown in the following diagram:

The Setup Procedures: Steps to Follow

[30]

We will start with a test table ERIC.T1 which only exists on DB2A—Q Apply will
create its equivalent called FRED.T1 on DB2B.

The database layer
The database layer we need for P2P two-way replication is the same as for bidirectional
replication in the previous the Bidirectional replication—The database layer section.

The WebSphere MQ layer
The queues we need for P2P two-way replication are the same as for bidirectional
replication in the previous the Bidirectional replication—The WebSphere MQ layer section.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps and the Q subscription. The tasks are:

•	 Creating the Q Capture and Q Apply tables on DB2A
•	 Creating the Q Capture and Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2B to DB2A
•	 Creating a Q subscription

Creating Q Capture/Q Apply control tables on DB2A
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2A section.

Creating Q Capture/Q Apply control tables on DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2B section.

Creating a Replication Queue Map for DB2A
to DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2A to DB2B section.

Appendix

[31]

Creating a Replication Queue Map for DB2B
to DB2A
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2B to DB2A section.

Creating a Q subscription
To create a P2P two-way Q subscription, follow the instructions in the Creating Q
subscriptions and Publications—Q subscription for P2P two-way replication section
of Chapter 5.

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A and DB2B
To start Q Capture, follow the instructions in the Q Capture administration—Starting Q
Capture section of Chapter 6.

Wait for both Q Captures to be up and running before starting the Q Applys.

Starting Q Apply on DB2A and DB2B
To start Q Apply, follow the instructions in Q Apply administration—Starting Q Apply
section of Chapter 6.

Testing replication
We are now in a position to test our P2P two-way replication setup. We can insert a
record into ERIC.T1 on DB2A and check that it is replicated to FRED.T1 on DB2B.

From CLP-A, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (1,1,'H')"

From CLP-B, issue:

$ db2 "select * from fred.t1"

C1 C2 C3 ibmqrepVERTIME
ibmqrepVERNODE

----------- ----------- ---------- ----------------------------------

 1 1 H 2007-03-21-13.45.25.640000 4

The Setup Procedures: Steps to Follow

[32]

We should see one record in FRED.T1 on DB2B.

Note the two extra columns which have automatically been added to the source and
target tables.

And then we insert a record into FRED.T1 on DB2B and check that it is replicated to
ERIC.T1 on DB2A.

From CLP-B, issue:

$ db2 "insert into fred.t1(c1,c2,c3) values (2,1,'J')"

From CLP-A, issue:

$ db2 "select * from eric.t1"

C1 C2 C3 ibmqrepVERTIME
ibmqrepVERNODE
----------- ----------- ---------- -------------------------- -------
 1 1 H 2007-03-21-13.45.25.640000 4
 2 2 T 2007-03-21-13.45.52.906000 8

We should see two records in ERIC.T1 on DB2A.

We can see that the P2P two-way Q replication setup is working.

P2P three-way replication
The setup we will use is shown in the following diagram:

Appendix

[33]

We will start with a test table ERIC.T1 which only exists on DB2A—Q Apply will
create the appropriate target tables on DB2B and DB2C.

The database layer
We need to create three source databases called DB2A, DB2B, and DB2C—follow
the instructions in the First steps—Database creation section.

We now have the database layer defined and can proceed to the
WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start three Queue Managers called QMA, QMB, and QMC—follow
the instructions in the First steps—Queue Manager processing section.

The queues we need for P2P three-way replication are shown next.

The queues we need for QMA are in SYSA_QMA_MQDEFS_P2P3W_ABC.TXT f file,
and contains:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(RCVR) +

The Setup Procedures: Steps to Follow

[34]

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE

QMA') +

PUT(ENABLED) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

DEFINE QREMOTE(CAPA.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPA.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPC.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPA FROM CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

Appendix

[35]

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPA.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPB.TO.APPA.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPA
FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

The Setup Procedures: Steps to Follow

[36]

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ) *

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM

QMC')

*

From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_P2P3W_ABC.TXT

The queues we need for QMB are in SYSB_QMB_MQDEFS_P2P3W_ABC.TXT file,
and contains:

DELETE QLOCAL(CAPB.ADMINQ) PURGE

DEFINE QLOCAL(CAPB.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPB CAPTURE') +

*

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

Appendix

[37]

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPB.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPB.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPB CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMB) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

*

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

*

DEFINE QREMOTE(CAPB.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPB.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPC.TO.APPB.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPB FROM CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

The Setup Procedures: Steps to Follow

[38]

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE

QMB') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPB.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPA.TO.APPB.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPB
FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMB.TO.QMC) +

CHLTYPE(SDR) +

Appendix

[39]

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')*

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_P2P3W_ABC.TXT

The Setup Procedures: Steps to Follow

[40]

The queues we need for QMC are in SYSC_QMC_MQDEFS_P2P3W_ABC.TXT file,
and contains:

DELETE QLOCAL(CAPC.ADMINQ) PURGE

DEFINE QLOCAL(CAPC.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPC.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPC.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

SHARE +

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

*

DEFINE QREMOTE(CAPC.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPC.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

Appendix

[41]

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MAXMSGL(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMC) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMC') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPC.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPA.TO.APPC.RECVQ)

*

DEFINE QLOCAL(CAPB.TO.APPC.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPC FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

The Setup Procedures: Steps to Follow

[42]

+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPC
FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMC.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB')
+

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

Appendix

[43]

From CLP-C, run the file as:

$ runmqsc QMC < SYSC_QMC_MQDEFS_P2P3W_ABC.TXT

Starting the Listeners
The Listeners and Channels for P2P three-way replication is shown in the
following diagram:

Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

The Listener for QMC can be started using the SYSC_QMC_START_RUNMQLSR.BAT batch
file as shown next:

start runmqlsr -t tcp -m QMC -p 1452

From CLP-C, run the file as:

$ SYSC_QMC_START_RUNMQLSR.BAT

The Setup Procedures: Steps to Follow

[44]

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

The Channel from QMA to QMC can be started by executing the contents of the batch
file called SYSA_QMA_START_RUNMQCHL_AC.BAT:

start runmqchl -m QMA -c QMA.TO.QMC

From CLP-A, run the file as:

$ SYSA_QMA_START_RUNMQCHL_AC.BAT

The Channel from QMB to QMC can be started by executing the contents of the
SYSB_QMB_START_RUNMQCHL_BC.BAT batch file:

start runmqchl -m QMB -c QMB.TO.QMC

From CLP-B, run the file as:

$ SYSB_QMB_START_RUNMQCHL_BC.BAT

The Channel from QMC to QMA can be started by executing the contents of the
SYSC_QMC_START_RUNMQCHL_CA.BAT batch file:

start runmqchl -m QMC -c QMC.TO.QMA

From CLP-C, run the file as:

$ SYSC_QMC_START_RUNMQCHL_CA.BAT

The Channel from QMC to QMB can be started by executing the contents of the
SYSC_QMC_START_RUNMQCHL_CB.BAT file:

start runmqchl -m QMC -c QMC.TO.QMB

From CLP-C, run the file as:

$ SYSC_QMC_START_RUNMQCHL_CB.BAT

Testing the WebSphere MQ layer
Now that everything is started we need to test the MQ layer.

We will start by putting test messages onto each system using the amqsput command
and then retrieving them using the amqsget command.

The following three commands will put messages onto the appropriate Send Queues.

Appendix

[45]

1.	 The put message file for QMA is called SYSA_QMA_TESTP_P2P3W.BAT
and contains:
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.
TO.APPB.SENDQ.REMOTE QMA < SYSA_QMA_TEST1.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMA <SYSA_QMA_TEST2.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.
TO.APPC.SENDQ.REMOTE QMA < SYSA_QMA_TEST3.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMA < SYSA_QMA_TEST4.TXT

From CLP-A, run the file as:
$ SYSA_QMA_TESTP_P2P3W.BAT

2.	 The put message file for QMB is called SYSB_QMB_TESTP_P2P3W.BAT
and contains:
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.
TO.APPA.SENDQ.REMOTE QMB < SYSB_QMB_TEST5.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST6.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.
TO.APPC.SENDQ.REMOTE QMB < SYSB_QMB_TEST7.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST8.TXT

From CLP-B, run the file as:
$ SYSB_QMB_TESTP_P2P3W.BAT

3.	 The put message file for QMC is called SYSC_QMC_TESTP_P2P3W.BAT and
contains:
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.
TO.APPA.SENDQ.REMOTE QMC < SYSC_QMC_TEST9.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMC < SYSC_QMC_TEST10.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.
TO.APPB.SENDQ.REMOTE QMC < SYSC_QMC_TEST11.TXT

The Setup Procedures: Steps to Follow

[46]

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMC < SYSC_QMC_TEST12.TXT

From CLP-C, run the file as:
$ SYSC_QMC_TESTP_P2P3W.BAT

Once we have put the test messages onto each Send Queue, we can retrieve them
from the appropriate Receive Queue.

1.	 The get message file for QMA is called SYSA_QMA_TESTG_P2P3W.BAT and
contains:
@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ
QMA

@ECHO You should see above: test6 test10

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPA.
RECVQ QMA

@ECHO You should see above: test5

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPA.
RECVQ QMA

@ECHO You should see above: test9

From CLP-A, run the file as:
$ SYSA_QMA_TESTG_P2P3W.BAT

2.	 The get message file for QMB is called SYSB_QMB_TESTG_P2P3W.BAT and
contains:
@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPB.
RECVQ QMB

@ECHO You should see above: test1

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.ADMINQ
QMB

@ECHO You should see above: test2 test12

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPB.
RECVQ QMB

@ECHO You should see above: test11

From CLP-B, run the file as:
$ SYSB_QMB_TESTG_P2P3W.BAT

Appendix

[47]

3.	 The get message file for QMC is called SYSC_QMC_TESTG_P2P3W.BAT and
contains:
@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPC.
RECVQ QMC

@ECHO You should see above: test3

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPC.
RECVQ QMC

@ECHO You should see above: test7

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.ADMINQ
QMC

@ECHO You should see above: test4 test8

From CLP-C, run the file as:
$ SYSC_QMC_TESTG_P2P3W.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture and Q Apply control tables on DB2A
•	 Creating the Q Capture and Q Apply control tables on DB2B
•	 Creating the Q Capture and Q Apply control tables on DB2C
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2A to DB2C
•	 Creating a Replication Queue Map for DB2B to DB2A
•	 Creating a Replication Queue Map for DB2B to DB2C
•	 Creating a Replication Queue Map for DB2C to DB2A
•	 Creating a Replication Queue Map for DB2C to DB2B
•	 Creating a Q subscription

The Setup Procedures: Steps to Follow

[48]

Creating Q Capture/Q Apply control tables on DB2A
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2A section.

Creating Q Capture/Q Apply control tables on DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2B section.

Creating Q Capture/Q Apply control tables on DB2C
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2B section.

Creating a Replication Queue Map for DB2A
to DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2A to DB2B section.

Creating a Replication Queue Map for DB2A
to DB2C
The Replication Queue Map for the queues going from DB2A to DB2C can be created
using the following ASNCLP commands in the SYSA_crt_rqma2c.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2C;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMA2C" USING
ADMINQ "CAPA.ADMINQ.REMOTE"
RECVQ "CAPA.TO.APPC.RECVQ"
SENDQ "CAPA.TO.APPC.SENDQ.REMOTE";

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_rqma2c.asnclp

Appendix

[49]

Creating a Replication Queue Map for DB2B
to DB2A
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2B to DB2A section.

Creating a Replication Queue Map for DB2B
to DB2C
The Replication Queue Map for the queues going from DB2B to DB2C can be created
using the following ASNCLP commands in the SYSB_crt_rqmb2c.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2B;
SET SERVER TARGET TO DB DB2C;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMB2C" USING
ADMINQ "CAPB.ADMINQ.REMOTE"
RECVQ "CAPB.TO.APPC.RECVQ"
SENDQ "CAPB.TO.APPC.SENDQ.REMOTE";

From CLP-B, run the file as:

$ asnclp -f SYSB_crt_rqmb2c.asnclp

Creating a Replication Queue Map for DB2C
to DB2A
The Replication Queue Map for the queues going from DB2C to DB2A can be created
using the following ASNCLP commands in the SYSC_crt_rqmc2a.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2C;
SET SERVER TARGET TO DB DB2A;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMC2A" USING
ADMINQ "CAPC.ADMINQ.REMOTE"
RECVQ "CAPC.TO.APPA.RECVQ"
SENDQ "CAPC.TO.APPA.SENDQ.REMOTE";

The Setup Procedures: Steps to Follow

[50]

From CLP-C, run the file as:

$ asnclp -f SYSC_crt_rqmc2a.asnclp

Creating a Replication Queue Map for DB2C
to DB2B
The Replication Queue Map for the queues going from DB2C to DB2B can be created
using the following ASNCLP commands in the SYSC_crt_rqmc2b.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2C;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMC2B" USING
ADMINQ "CAPC.ADMINQ.REMOTE"
RECVQ "CAPC.TO.APPB.RECVQ"
SENDQ "CAPC.TO.APPB.SENDQ.REMOTE";

From CLP-C, run the file as:

$ asnclp -f SYSC_crt_rqmc2b.asnclp

Creating a Q subscription
The SYSA_loadp2p3w.asnclp load file runs the content SYSA_contp2p3w.txt,
and contains:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

LOAD MULTIDIR REPL SCRIPT "SYSA_contp2p3w.txt";
The content file SYSA_contp2p3w.txt contains:
set subgroup "3Node0";

set output multidir;
set server multidir to db DB2A;
set multidir schema DB2A.ASN;
set server multidir to db DB2B;
set multidir schema DB2B.ASN;
set server multidir to db DB2C;
set multidir schema DB2C.ASN;

Appendix

[51]

SET CONNECTION SOURCE DB2A.ASN TARGET DB2B.ASN REPLQMAP RQMA2B;

SET CONNECTION SOURCE DB2A.ASN TARGET DB2C.ASN REPLQMAP RQMA2C;

SET CONNECTION SOURCE DB2B.ASN TARGET DB2A.ASN REPLQMAP RQMB2A;

SET CONNECTION SOURCE DB2B.ASN TARGET DB2C.ASN REPLQMAP RQMB2C;

SET CONNECTION SOURCE DB2C.ASN TARGET DB2A.ASN REPLQMAP RQMC2A;

SET CONNECTION SOURCE DB2C.ASN TARGET DB2B.ASN REPLQMAP RQMC2B;

set tables(DB2A.ASN.ERIC.T1,DB2B.ASN.FRED.T1,DB2C.ASN.HEAT.T1);

CREATE QSUB subtype p;

From CLP-A, run the file as:

$ asnclp -f SYSA_loadp2p3w.asnclp

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A, DB2B, and DB2C
To start Q Capture follow the instructions in the Q Capture administration—Starting Q
Capture section of Chapter 6.

Wait for all Q Captures to be up and running before starting the Q Applys.

Starting Q Apply on DB2A, DB2B, and DB2C
To start Q Capture, follow the instructions in the Q Apply administration—Starting Q
Apply section of Chapter 6.

Issuing a CAPSTART command
We now have to start the other Q subscriptions after we have started all the Q
Captures and Q Applys.

We need to wait for the T10001 and T10004 Q subscriptions to be
active before issuing the CAPSTART command. If we do not wait for
this, then we will see the following message in the Q Capture log
for DB2A:

<queueSub::findActiveP2PMember> ASN7063E "Q
Capture" : "ASN" : "WorkerThread" : Q subscription
"T10002" was not activated because another Q
subscription "T10001", which shares the same Q
subscription group, is in the process of being
activated.

The Setup Procedures: Steps to Follow

[52]

If we get this message, then we need to check the IBMQREP_SUBS table to find out
which Q subscriptions are in I state and reactivate them. We might first have to
deactivate the Q subscription for T10001 and then activate it again before continuing
with the activation of the other Q subscriptions.

To activate the other Q subscriptions, we will use the ASNCLP commands in the
SYSA_qsub_start_db2ac.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

SET SERVER CAPTURE TO DB DB2A;

SET SERVER TARGET TO DB DB2C;

START QSUB SUBNAME T10002;

From CLP-A, run the file as:

$ asnclp -f SYSA_qsub_start_db2ac.asnclp

Testing replication
We are now in a position to test our P2P three-way replication setup. We can insert a
record into ERIC.T1 on DB2A and check that it is replicated to FRED.T1 on DB2B
and DB2C.

From CLP-A, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (1,1,'J')"

From CLP-B, issue:

$ db2 "select * from fred.t1"

We should see one record in FRED.T1 on DB2B.

From CLP-C, issue:

$ db2 "select * from heat.t1"

Appendix

[53]

We should see one record in HEAT.T1 on DB2C.

And then if we insert a record into HEAT.T1 on DB2C and check that it is replicated to
ERIC.T1 on DB2A and FRED.T1 on DB2B.

From CLP-C, issue:

$ db2 "insert into heat.t1(c1,c2,c3) values (2,2,'H')"

From CLP-A, issue:

$ db2 "select * from eric.t1"

We should see two records in ERIC.T1 on DB2A.

From CLP-B, issue:

$ db2 "select * from fred.t1"

We should see two records in FRED.T1 on DB2C.

And then finally if we insert a record into FRED.T1 on DB2B and check that it is
replicated to ERIC.T1 on DB2A and HEAT.T1 on DB2C.

From CLP-B, issue:

$ db2 "insert into fred.t1(c1,c2,c3) values (3,3,'S')"

From CLP-A, issue:

$ db2 "select * from eric.t1"

We should see three records in ERIC.T1 on DB2A.

From CLP-C, issue:

$ db2 "select * from heat.t1"

We should see three records in HEAT.T1 on DB2C.

We can see that the P2P three-way Q replication setup is working.

The Setup Procedures: Steps to Follow

[54]

P2P four-way replication
The setup we will use is shown in the following diagram:

The test table ERIC.T1 only exists on DB2A—Q Apply will create it on DB2B,
DB2C, and DB2D.

The database layer
We need to create four source databases called DB2A, DB2B, DB2C, and DB2D—follow
the instructions in the First steps—Database creation section.

We now have the database layer defined and can proceed to the WebSphere
MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Appendix

[55]

Creating the Queue Managers and Queues
We need to create and start four Queue Managers called QMA, QMB, QMC, and QMD—
follow the instructions in the First steps—Queue Manager processing section.

The queues we need for P2P four-way replication are shown next.

The queues we need for QMA are in SYSA_QMA_MQDEFS_P2P4W_ABCD.TXT file:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

DEFINE QLOCAL(CAPC.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPA FROM CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

The Setup Procedures: Steps to Follow

[56]

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE

QMA') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPA.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')

*

DEFINE QREMOTE(CAPA.TO.APPD.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPD') +

Appendix

[57]

DEFINE QLOCAL(CAPB.TO.APPA.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPA
FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

PUT(ENABLED) +

XMITQ(QMD.XMITQ) +

RNAME(CAPA.TO.APPD.RECVQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPD.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPA FROM CAPD') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPD.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ

FOR CAPD CAPTURE') +

PUT(ENABLED) +

XMITQ(QMD.XMITQ) +

RNAME(CAPD.ADMINQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMD.XMITQ) +

REPLACE +

The Setup Procedures: Steps to Follow

[58]

TRIGDATA(QMA.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

DEFINE QREMOTE(CAPA.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPA.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

DESCR('TRANSMISSION QUEUE TO
QMD') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMD) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMD) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMD')
+

XMITQ(QMD.XMITQ) +

CONNAME('127.0.0.1(1453)')

*

DEFINE CHANNEL(QMD.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMD')*

Appendix

[59]

From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_P2P4W_ABCD.TXT

The queues we need for QMB are in SYSB_QMB_MQDEFS_P2P4W_ABCD.TXT file:

DELETE QLOCAL(CAPB.ADMINQ) PURGE

DEFINE QLOCAL(CAPB.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPB.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPB.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPB CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFINE QLOCAL(CAPC.TO.APPB.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPB FROM CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

The Setup Procedures: Steps to Follow

[60]

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMB) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMB') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPB.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPA.TO.APPB.RECVQ)
+

REPLACE +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMB.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')

*

DEFINE QREMOTE(CAPB.TO.APPD.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPD') +

PUT(ENABLED) +

Appendix

[61]

DESCR('LOCAL RECEIVE QUEUE - APPB
FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

XMITQ(QMD.XMITQ) +

RNAME(CAPB.TO.APPD.RECVQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPD.TO.APPB.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPB FROM CAPD') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPD.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPD CAPTURE') +

PUT(ENABLED) +

XMITQ(QMD.XMITQ) +

RNAME(CAPD.ADMINQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMD.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMD') +

The Setup Procedures: Steps to Follow

[62]

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

*

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

*

DEFINE QREMOTE(CAPB.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPB TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPB.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES) *

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMD) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMB.TO.QMD) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMD') +

XMITQ(QMD.XMITQ) +

CONNAME('127.0.0.1(1453)')

*

DEFINE CHANNEL(QMD.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMD')

*

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_P2P4W_ABCD.TXT

The queues we need for QMC are in SYSC_QMC_MQDEFS_P2P4W_ABCD.TXT file:

Appendix

[63]

DELETE QLOCAL(CAPC.ADMINQ) PURGE

DEFINE QLOCAL(CAPC.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPC.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPC.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

The Setup Procedures: Steps to Follow

[64]

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMC) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE

QMC') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPC.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPA.TO.APPC.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPC
FROM CAPA') +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMC.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

DEFINE QREMOTE(CAPC.TO.APPD.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPD') +

PUT(ENABLED) +

XMITQ(QMD.XMITQ) +

Appendix

[65]

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

RNAME(CAPC.TO.APPD.RECVQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPD.TO.APPC.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPC FROM CAPD') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPD.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPD CAPTURE') +

PUT(ENABLED) +

XMITQ(QMD.XMITQ) +

RNAME(CAPD.ADMINQ) +

RQMNAME(QMD) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMD.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMD') +

USAGE(XMITQ) +

The Setup Procedures: Steps to Follow

[66]

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

*

DEFINE QREMOTE(CAPC.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPC.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPB.TO.APPC.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPC FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)*

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMD) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMC.TO.QMD) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMD') +

XMITQ(QMD.XMITQ) +

CONNAME('127.0.0.1(1453)')

*

DEFINE CHANNEL(QMD.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM

QMD')*

From CLP-C, run the file as:

$ runmqsc QMC < SYSC_QMC_MQDEFS_P2P4W_ABCD.TXT

The queues we need for QMD are in SYSD_QMD_MQDEFS_P2P4W_ABCD.TXT file:

Appendix

[67]

DELETE QLOCAL(CAPD.ADMINQ) PURGE

DEFINE QLOCAL(CAPD.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPD CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPD.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPD.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPD CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(CAPB.TO.APPD.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPD FROM CAPB') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPB.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPB CAPTURE') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPB.ADMINQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMD.TO.QMB) +

The Setup Procedures: Steps to Follow

[68]

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMD) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMD') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPD.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPD TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPD.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPA.TO.APPD.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPD
FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMD.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

*

DEFINE CHANNEL(QMB.TO.QMD) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

*

DEFINE QREMOTE(CAPD.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPD TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPD.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(CAPC.TO.APPD.
RECVQ) +

Appendix

[69]

*

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMD.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMD.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPD FROM CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMD.TO.QMC) +

The Setup Procedures: Steps to Follow

[70]

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

*

DEFINE CHANNEL(QMA.TO.QMD) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

*

DEFINE QREMOTE(CAPD.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPD TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPD.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES) *

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMD.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC')
+

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMD) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')

From CLP-D, run the file as:

$ runmqsc QMD < SYSB_QMD_MQDEFS_P2P4W_ABCD.TXT

Now that we have defined all the queues, we can start the Listeners and Channels.

Starting the Listeners
Start the Listeners for QMA, QMB, and QMC as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Listeners section.

Appendix

[71]

The Listener for QMD can be started using the SYSC_QMD_START_RUNMQLSR.BAT batch
file as shown next:

start runmqlsr -t tcp -m QMD -p 1453

From CLP-D, run the file as:

$ SYSC_QMD_START_RUNMQLSR.BAT

Starting the Channels
Start the Channels between QMA, QMB, and QMC as described in the P2P three-way
replication—The WebSphere MQ layer—Starting the Channels section.

The Channel from QMA to QMD can be started by executing the contents of the
SYSA_QMA_START_RUNMQCHL_AD.BAT file:

start runmqchl -m QMA -c QMA.TO.QMD

From CLP-A, run the file as:

$ SYSA_QMA_START_RUNMQCHL_AD.BAT

The Channel from QMB to QMD can be started by executing the contents of the
SYSB_QMB_START_RUNMQCHL_BD.BAT file:

start runmqchl -m QMB -c QMB.TO.QMD

From CLP-B, run the file as:

$ SYSB_QMB_START_RUNMQCHL_BD.BAT

The Channel from QMC to QMD can be started by executing the contents of the
SYSC_QMC_START_RUNMQCHL_CD.BAT file:

start runmqchl -m QMC -c QMC.TO.QMD

From CLP-C, run the file as:

$ SYSC_QMC_START_RUNMQCHL_CD.BAT

The Channel from QMD to QMA can be started by executing the contents of the
SYSC_QMC_START_RUNMQCHL_DA.BAT file:

start runmqchl -m QMD -c QMD.TO.QMA

The Channel from QMD to QMB can be started by executing the contents of the
SYSD_QMD_START_RUNMQCHL_DB.BAT file:

start runmqchl -m QMD -c QMD.TO.QMB

The Setup Procedures: Steps to Follow

[72]

The Channel from QMD to QMC can be started by executing the contents of the
SYSD_QMD_START_RUNMQCHL_DC.BAT file:

start runmqchl -m QMD -c QMD.TO.QMC

From CLP-D, run the files as:

$ SYSD_QMD_START_RUNMQCHL_DB.BAT

$ SYSD_QMD_START_RUNMQCHL_DA.BAT

$ SYSD_QMD_START_RUNMQCHL_DC.BAT

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

We will start by putting test messages onto each system using the amqsput command
and then retrieving them using the amqsget command.

The put message batch file for QMA is called SYSA_QMA_TESTP_P2P4W.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPB.
SENDQ.REMOTE QMA < SYSA_QMA_TEST1.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMA < SYSA_QMA_TEST2.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPC.
SENDQ.REMOTE QMA < SYSA_QMA_TEST3.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMA < SYSA_QMA_TEST4.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPD.
SENDQ.REMOTE QMA < SYSA_QMA_TEST5.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.ADMINQ.
REMOTE QMA < SYSA_QMA_TEST6.TXT

From CLP-A, run the file as:

$ SYSA_QMA_TESTP_P2P4W.BAT

The put message batch file for QMB is called SYSB_QMB_TESTP_P2P4W.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.TO.APPA.
SENDQ.REMOTE QMB < SYSB_QMB_TEST7.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST8.TXT

Appendix

[73]

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.TO.APPC.
SENDQ.REMOTE QMB < SYSB_QMB_TEST9.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST10.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.TO.APPD.
SENDQ.REMOTE QMB < SYSB_QMB_TEST11.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.ADMINQ.
REMOTE QMB < SYSB_QMB_TEST12.TXT

From CLP-B, run the file as:

$ SYSB_QMB_TESTP_P2P4W.BAT

The put message batch file for QMC is called SYSC_QMC_TESTP_P2P4W.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.TO.APPA.
SENDQ.REMOTE QMC < SYSC_QMC_TEST13.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMC < SYSC_QMC_TEST14.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.TO.APPB.
SENDQ.REMOTE QMC < SYSC_QMC_TEST15.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMC < SYSC_QMC_TEST16.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.TO.APPD.
SENDQ.REMOTE QMC < SYSC_QMC_TEST17.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.ADMINQ.
REMOTE QMC < SYSC_QMC_TEST18.TXT

From CLP-C, run the file as:

$ SYSC_QMC_TESTP_P2P4W.BAT

The put message batch file for QMD is called SYSD_QMD_TESTP_P2P4W.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.TO.APPA.
SENDQ.REMOTE QMD < SYSD_QMD_TEST19.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMD < SYSD_QMD_TEST20.TXT

The Setup Procedures: Steps to Follow

[74]

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.TO.APPB.
SENDQ.REMOTE QMD < SYSD_QMD_TEST21.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPB.ADMINQ.
REMOTE QMD < SYSD_QMD_TEST22.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPD.TO.APPC.
SENDQ.REMOTE QMD < SYSD_QMD_TEST23.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMD < SYSD_QMD_TEST24.TXT

From CLP-D, run the file as:

$ SYSD_QMD_TESTP_P2P4W.BAT

Once we have put the test messages onto each system, we can retrieve them.

The get message batch file for QMA is called SYSA_QMA_TESTG_P2P4W.BAT:

@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ
QMA

@ECHO You should see above: test8 test14 test20

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPA.
RECVQ QMA

@ECHO You should see above: test7

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPA.
RECVQ QMA

@ECHO You should see above: test13

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPD.TO.APPA.
RECVQ QMA

@ECHO You should see above: test19

From CLP-A, run the file as:

$ SYSA_QMA_TESTG_P2P4W.BAT

The get message batch file for QMB is called SYSB_QMB_TESTG_P2P4W.BAT:

@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPB.
RECVQ QMB

@ECHO You should see above: test1

Appendix

[75]

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.ADMINQ
QMB

@ECHO You should see above: test2 test16 test22

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPB.
RECVQ QMB

@ECHO You should see above: test15

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPD.TO.APPB.
RECVQ QMB

@ECHO You should see above: test21

From CLP-B, run the file as:

$ SYSB_QMB_TESTG_P2P4W.BAT

The get message batch file for QMC is called SYSC_QMC_TESTG_P2P4W.BAT:

echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPC.
RECVQ QMC

@ECHO You should see above: test3

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPC.
RECVQ QMC

@ECHO You should see above: test9

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.ADMINQ
QMC

@ECHO You should see above: test4 test10 test24

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPD.TO.APPC.
RECVQ QMC

@ECHO You should see above: test23

From CLP-C, run the file as:

$ SYSC_QMC_TESTG_P2P4W.BAT

The get message batch file for QMD is called SYSD_QMD_TESTG_P2P4W.BAT:

echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPD.
RECVQ QMD

@ECHO You should see above: test5

The Setup Procedures: Steps to Follow

[76]

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPB.TO.APPD.
RECVQ QMD

@ECHO You should see above: test11

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPD.
RECVQ QMD

@ECHO You should see above: test17

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPD.ADMINQ
QMD

@ECHO You should see above: test6 test12 test18

From CLP-D, run the file as:

$ SYSD_QMD_TESTG_P2P4W.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps and the Q subscription. The tasks are:

•	 Creating the Q Capture and Q Apply control tables on DB2A
•	 Creating the Q Capture and Q Apply control tables on DB2B
•	 Creating the Q Capture and Q Apply control tables on DB2C
•	 Creating the Q Capture and Q Apply control tables on DB2D
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2A to DB2C
•	 Creating a Replication Queue Map for DB2A to DB2D
•	 Creating a Replication Queue Map for DB2B to DB2A
•	 Creating a Replication Queue Map for DB2B to DB2C
•	 Creating a Replication Queue Map for DB2B to DB2D
•	 Creating a Replication Queue Map for DB2C to DB2A
•	 Creating a Replication Queue Map for DB2C to DB2B
•	 Creating a Replication Queue Map for DB2C to DB2D
•	 Creating a Replication Queue Map for DB2D to DB2A

Appendix

[77]

•	 Creating a Replication Queue Map for DB2D to DB2B
•	 Creating a Replication Queue Map for DB2D to DB2C
•	 Creating a Q subscription

Creating Q Capture/Q Apply control tables on DB2A
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2A section.

Creating Q Capture/Q Apply control tables on DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2B section.

Creating Q Capture/Q Apply control tables on DB2C
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2C section.

Creating Q Capture/Q Apply control tables on DB2D
The Q Capture and Q Apply control tables for DB2D can be created using the
following ASNCLP commands in the SYSD_db2d_crt_capture_apply.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2D ;

SET SERVER TARGET TO DB DB2D ;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

SET QMANAGER QMD FOR CAPTURE SCHEMA;

SET QMANAGER QMD FOR APPLY SCHEMA;

CREATE CONTROL TABLES FOR APPLY SERVER USING

MONITOR LIMIT 3

TRACE LIMIT 9;

CREATE CONTROL TABLES FOR CAPTURE SERVER USING

RESTARTQ "CAPD.RESTARTQ"

ADMINQ "CAPD.ADMINQ"

STARTMODE WARMSI

MEMORY LIMIT 4

MONITOR INTERVAL 10;

The Setup Procedures: Steps to Follow

[78]

From CLP-D, run the file as:

$ asnclp -f SYSD_db2d_crt_capture_apply.asnclp

Creating a Replication Queue Map for DB2A
to DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2A to DB2B section.

Creating a Replication Queue Map for DB2A
to DB2C
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2A to DB2C section.

Creating a Replication Queue Map for DB2A
to DB2D
The Replication Queue Map for the queues going from DB2A to DB2D can be created
using the following ASNCLP commands in the SYSA_crt_rqma2d.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2D;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMA2D" USING
ADMINQ "CAPA.ADMINQ.REMOTE"
RECVQ "CAPA.TO.APPD.RECVQ"
SENDQ "CAPA.TO.APPD.SENDQ.REMOTE";

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_rqma2d.asnclp

Creating a Replication Queue Map for DB2B
to DB2A
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2B to DB2A section.

Appendix

[79]

Creating a Replication Queue Map for DB2B
to DB2C
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2B to DB2C section.

Creating a Replication Queue Map for DB2B
to DB2D
The Replication Queue Map for the queues going from DB2B to DB2C can be created
using the following ASNCLP commands in the SYSB_crt_rqmb2d.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2B;

SET SERVER TARGET TO DB DB2D;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMB2D" USING

ADMINQ "CAPB.ADMINQ.REMOTE"

RECVQ "CAPB.TO.APPD.RECVQ"

SENDQ "CAPB.TO.APPD.SENDQ.REMOTE";

From CLP-B, run the file as:

$ asnclp -f SYSB_crt_rqmb2d.asnclp

Creating a Replication Queue Map for DB2C
to DB2A
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2C to DB2A section.

Creating a Replication Queue Map for DB2C
to DB2B
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2C to DB2B section.

The Setup Procedures: Steps to Follow

[80]

Creating a Replication Queue Map for DB2C
to DB2D
The Replication Queue Map for the queues going from DB2C to DB2A can be
created using the following ASNCLP commands in the SYSC_crt_rqmc2d.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2C;

SET SERVER TARGET TO DB DB2D;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMC2D" USING

ADMINQ "CAPC.ADMINQ.REMOTE"

RECVQ "CAPC.TO.APPD.RECVQ"

SENDQ "CAPC.TO.APPD.SENDQ.REMOTE";

From CLP-C, run the file as:

$ asnclp -f SYSC_crt_rqmc2d.asnclp

Creating a Replication Queue Map for DB2D
to DB2A
The Replication Queue Map for the queues going from DB2D to DB2A can be created
using the following ASNCLP commands in the SYSD_crt_rqmd2a.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2D;

SET SERVER TARGET TO DB DB2A;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMD2A" USING

ADMINQ "CAPD.ADMINQ.REMOTE"

RECVQ "CAPD.TO.APPA.RECVQ"

SENDQ "CAPD.TO.APPA.SENDQ.REMOTE";

From CLP-D, run the file as:

$ asnclp -f SYSD_crt_rqmd2a.asnclp

Appendix

[81]

Creating a Replication Queue Map for DB2D
to DB2B
The Replication Queue Map for the queues going from DB2D to DB2B can be created
using the following ASNCLP commands in the SYSD_crt_rqmd2b.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2D;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMD2B" USING
ADMINQ "CAPD.ADMINQ.REMOTE"
RECVQ "CAPD.TO.APPB.RECVQ"
SENDQ "CAPD.TO.APPB.SENDQ.REMOTE";

From CLP-D, run the file as:

$ asnclp -f SYSD_crt_rqmd2b.asnclp

Creating a Replication Queue Map for DB2D
to DB2C
The Replication Queue Map for the queues going from DB2D to DB2C can be created
using the following ASNCLP commands in the SYSD_crt_rqmd2c.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2D;

SET SERVER TARGET TO DB DB2C;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

CREATE REPLQMAP "RQMD2C" USING

ADMINQ "CAPD.ADMINQ.REMOTE"

RECVQ "CAPD.TO.APPC.RECVQ"

SENDQ "CAPD.TO.APPC.SENDQ.REMOTE";

From CLP-D, run the file as:

$ asnclp -f SYSD_crt_rqmd2c.asnclp

The Setup Procedures: Steps to Follow

[82]

Creating a Q subscription
Here is the P2P four-way SYSA_loadp2p4w.asnclp load file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

LOAD MULTIDIR REPL SCRIPT "SYSA_contp2p4w.txt";

This is the P2P four-way SYSA_contp2p4w.txt content file:

set subgroup "TABT1";

set server multidir to db "DB2A";

set server multidir to db "DB2B";

set server multidir to db "DB2C";

set server multidir to db "DB2D";

set multidir schema "DB2A".ASN;

set multidir schema "DB2B".ASN;

set multidir schema "DB2C".ASN;

set multidir schema "DB2D".ASN;

SET CONNECTION SOURCE DB2A.ASN TARGET DB2B.ASN REPLQMAP RQMA2B;

SET CONNECTION SOURCE DB2A.ASN TARGET DB2C.ASN REPLQMAP RQMA2C;

SET CONNECTION SOURCE DB2A.ASN TARGET DB2D.ASN REPLQMAP RQMA2D;

SET CONNECTION SOURCE DB2B.ASN TARGET DB2A.ASN REPLQMAP RQMB2A;

SET CONNECTION SOURCE DB2B.ASN TARGET DB2C.ASN REPLQMAP RQMB2C;

SET CONNECTION SOURCE DB2B.ASN TARGET DB2D.ASN REPLQMAP RQMB2D;

SET CONNECTION SOURCE DB2C.ASN TARGET DB2A.ASN REPLQMAP RQMC2A;

SET CONNECTION SOURCE DB2C.ASN TARGET DB2B.ASN REPLQMAP RQMC2B;

SET CONNECTION SOURCE DB2C.ASN TARGET DB2D.ASN REPLQMAP RQMC2D;

SET CONNECTION SOURCE DB2D.ASN TARGET DB2A.ASN REPLQMAP RQMD2A;

SET CONNECTION SOURCE DB2D.ASN TARGET DB2B.ASN REPLQMAP RQMD2B;

SET CONNECTION SOURCE DB2D.ASN TARGET DB2C.ASN REPLQMAP RQMD2C;

set tables("DB2A".ASN.ERIC.T1, "DB2B".ASN.ERIC.T1,

"DB2C".ASN.ERIC.T1, "DB2D".ASN.ERIC.T1);

CREATE QSUB subtype p;

If we wanted to change the name of the table on the other DB2 systems, then this is
the place to do it.

From CLP-A, run the file as:

$ asnclp -f SYSA_loadp2p4w.asnclp

Appendix

[83]

The following Q subscriptions are created

A B C D
T10001 T10004 T10007 T10010

T10002 T10005 T10008 T10011

T10003 T10006 T10009 T10012

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A, DB2B, DB2C, and DB2D
To start Q Capture, follow the instructions in the Q Capture administration—Starting
Q Capture section of Chapter 6.

Wait for all Q Captures to be up and running before starting the Q Applys.

Starting Q Apply on DB2A, DB2B, DB2C, and DB2D
To start Q Capture, follow the instructions in the Q Apply administration—Starting Q
Apply section of Chapter 6.

Let's check the status of each of the Q subscriptions in the Q subscription
group using:

$ db2 "select substr(subname,1,10) as subname, state as S, state_time
from asn.ibmqrep_subs"

From CLP-A:

SUBNAME S STATE_TIME

---------- - --------------------------

T10001 A 2006-02-22-18.32.22.112000

T10002 I 2006-02-22-18.22.14.468000

T10003 I 2006-02-22-18.22.14.478002

We can see that the status of T10001 is A, which means active. This is set automatically
when Q Capture and Q Apply start. This is the only one that is started automatically
(along with its pair on DB2B)—we need to start the other Q subscriptions manually.

The Setup Procedures: Steps to Follow

[84]

From CLP-B:

SUBNAME S STATE_TIME

---------- - --------------------------

T10004 A 2006-02-22-18.31.45.399001

T10005 I 2006-02-22-18.22.15.960000

T10006 I 2006-02-22-18.22.15.970004

We can see that the status of T10004 is A, which means active.

From CLP-C:

SUBNAME S STATE_TIME

---------- - --------------------------

T10007 I 2006-02-22-18.22.17.663001

T10008 I 2006-02-22-18.22.17.683001

T10009 I 2006-02-22-18.22.17.693003

The status of all the Q subscriptions is I which means inactive—we will need to start
these manually.

From CLP-D:

SUBNAME S STATE_TIME

---------- - --------------------------

T10010 I 2006-02-22-18.22.19.185003

T10011 I 2006-02-22-18.22.19.205000

T10012 I 2006-02-22-18.22.19.235000

The status of all the Q subscriptions is I which means inactive—we will need to
start these manually. This situation is shown in the following diagram, where the
complete lines show active Q subscriptions, and the dotted lines show inactive
Q subscriptions in the Q subscription group.

Appendix

[85]

We see that the Q subscriptions T10001 and T10004 are the only ones that are
activated. We now need to start the others manually.

Issuing CAPSTART command(s)
We need to issue a CAPSTART command.

We need to wait for the T10001 and T10004 Q subscriptions to be active
before issuing the CAPSTART command. If we do not wait for this, then
we will see the following in the Q Capture log for DB2A:

<queueSub::findActiveP2PMember> ASN7063E "Q Capture"
: "ASN" : "WorkerThread" : Q subscription "T10002" was
not activated because another Q subscription "T10001",
which shares the same Q subscription group, is in the
process of being activated.

If we get this message, then we need to check the IBMQREP_SUBS table to find out
which Q subscriptions are in I state and reactivate them. We might first have to
deactivate the Q subscription for T10001 and then activate it again before
continuing with the activation of the other Q subscriptions.

To issue the CAPSTART command, we will use the ASNCLP commands in the
SYSA_qsub_start_db2ac.asnclp file:

From CLP-A:

$ asnclp -f SYSA_qsub_start_db2ac.asnclp

The Setup Procedures: Steps to Follow

[86]

We can check the status of the Q subscription using the previous query.

From CLP-A:

SUBNAME S STATE_TIME

---------- - --------------------------

T10001 A 2006-02-22-18.32.22.112000

T10002 A 2006-02-22-18.37.33.470001

T10003 I 2006-02-22-18.22.14.478002

From CLP-B:

SUBNAME S STATE_TIME

---------- - --------------------------

T10004 A 2006-02-22-18.37.26.360002

T10005 A 2006-02-22-18.37.36.394000

T10006 I 2006-02-22-18.22.15.970004

From CLP-C:

SUBNAME S STATE_TIME

---------- - --------------------------

T10007 A 2006-02-22-18.37.23.546001

T10008 A 2006-02-22-18.37.33.580000

T10009 I 2006-02-22-18.22.17.693003

From CLP-D:

SUBNAME S STATE_TIME

---------- - --------------------------

T10010 I 2006-02-22-18.22.19.185003

T10011 I 2006-02-22-18.22.19.205000

T10012 I 2006-02-22-18.22.19.235000

The following diagram shows the state of the Q subscriptions after issuing a CAPSTART
command between A and C (the bold letters show the activated Q subscriptions).

Appendix

[87]

We need to issue another CAPSTART command from A to D.

We need to wait for the T10001, T10004, T10002, T10005, T10007, and T10008 Q
subscriptions to be active before issuing the CAPSTART. If we do not wait for this, then
we will see the ASN7063E message, discussed earlier, in the Q Capture log for DB2A.

To issue the second CAPSTART command, we will use the ASNCLP commands in the
SYSA_qsub_start_db2ad.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;

SET SERVER TARGET TO DB DB2D;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

START QSUB SUBNAME T10003;

From CLP-A, issue:

$ asnclp -f SYSA_qsub_start_db2ad.asnclp

The Setup Procedures: Steps to Follow

[88]

Let's check the status of the Q subscription again (using the previous query):

From CLP-A:

SUBNAME S STATE_TIME
---------- - --------------------------
T10001 A 2006-02-22-18.32.22.112000
T10002 A 2006-02-22-18.37.33.470001
T10003 T 2006-02-22-18.43.24.374000

If we issue the command immediately after issuing the CAPSTART command, we will
see a state of T.

Issue the command again after a few seconds and the STATE(S) should change to A.

From CLP-A:

SUBNAME S STATE_TIME
---------- - --------------------------
T10001 A 2006-02-22-18.32.22.112000
T10002 A 2006-02-22-18.37.33.470001
T10003 A 2006-02-22-18.43.44.954000

From CLP-B:

SUBNAME S STATE_TIME
---------- - --------------------------
T10004 A 2006-02-22-18.43.37.333001
T10005 A 2006-02-22-18.37.36.394000
T10006 A 2006-02-22-18.43.47.357000

From CLP-C:

SUBNAME S STATE_TIME
---------- - --------------------------
T10007 A 2006-02-22-18.43.34.519000
T10008 A 2006-02-22-18.37.33.580000
T10009 A 2006-02-22-18.43.49.551000

From CLP-D:

SUBNAME S STATE_TIME
---------- - --------------------------
T10010 A 2006-02-22-18.43.30.002001
T10011 A 2006-02-22-18.43.45.064000
T10012 A 2006-02-22-18.43.45.064001

Appendix

[89]

We can see that we now have an active Q subscription group.

The order of Q subscription activation is shown in the following table. The first row
shows the system name, and the row below that shows the Q subscription name. The
initial row shows the Q subscriptions that are active once Q Capture and Q Apply
are started. The db2ac row shows the Q subscriptions that are active after the asnclp
-f SYSA_qsub_start_db2ac.asnclp command has been executed. The db2ad row
shows the Q subscriptions that are active after the
asnclp -f SYSA_qsub_start_db2ad.asnclp command has been executed.

P2P four-way—order of Q subscription activation is shown in the following table:

A B C D
T100 01 02 03 04 05 06 07 08 09 10 11 12
Initial A A
db2ac A A A A A A
db2ad A A A A A A A A A A A A

Testing replication
We are now in a position to test our P2P four-way replication setup. We can insert a
record into ERIC.T1 on DB2A and check that it is replicated to DB2B, DB2C, and DB2D.

From CLP-A, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (1,1,'J')"

From CLP-B, issue:

$ db2 "select * from eric.t1"

We should see one record in ERIC.T1 on DB2B.

From CLP-C, issue:

$ db2 "select * from eric.t1"

We should see one record in ERIC.T1 on DB2C.

From CLP-D, issue:

$ db2 "select * from eric.t1"

We should see one record in ERIC.T1 on DB2D.

The Setup Procedures: Steps to Follow

[90]

And then if we insert a record into ERIC.T1 on DB2D and check that it is replicated to
DB2A, DB2B, and DB2C:

From CLP-D, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (2,2,'H')"

From CLP-A, issue:

$ db2 "select * from eric.t1"

We should see two records in ERIC.T1 on DB2A.

From CLP-B, issue:

$ db2 "select * from eric.t1"

We should see two records in FRED.T1 on DB2B.

From CLP-C, issue:

$ db2 "select * from eric.t1"

We should see two records in FRED.T1 on DB2C.

And then if we insert a record into ERIC.T1 on DB2C and check that it is replicated to
DB2D, DB2A, and DB2B:

From CLP-C, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (3,3,'S')"

From CLP-D, issue:

$ db2 "select * from eric.t1"

We should see three records in ERIC.T1 on DB2D.

From CLP-A, issue:

$ db2 "select * from eric.t1"

We should see three records in ERIC.T1 on DB2A.

From CLP-B, issue:

$ db2 "select * from eric.t1"

We should see three records in ERIC.T1 on DB2B.

Appendix

[91]

And finally if we insert a record into ERIC.T1 on DB2B and check that it is replicated
to DB2C, DB2D, and DB2A:

From CLP-B, issue:

$ db2 "insert into eric.t1(c1,c2,c3) values (4,4,'T')"

From CLP-C, issue:

$ db2 "select * from eric.t1"

We should see four records in ERIC.T1 on DB2C.

From CLP-D, issue:

$ db2 "select * from eric.t1"

We should see four records in ERIC.T1 on DB2D.

From CLP-A, issue:

$ db2 "select * from eric.t1"

We should see four records in ERIC.T1 on DB2A.

We can see that the P2P four-way Q replication setup is working.

Event Publishing
The setup we will use is shown in the following diagram:

The Setup Procedures: Steps to Follow

[92]

The database layer
We need to create one source database called DB2A, follow the instructions in the First
steps—Database creation section. Note that there is no target database/table.

We now have the database layer defined and can now proceed to the
WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB—follow the
instructions in the First steps—Queue Manager processing section.

The queues we need for Event Publishing are shown next.

The queues we need for QMA are in SYSA_QMA_MQDEFS_EP_AB.TXT file:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

DEFINE QREMOTE(CAPA.TO.APPB.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPB') +

PUT(ENABLED) +

XMITQ(QMB.XMITQ) +

RNAME(CAPA.TO.APPB.RECVQ) +

RQMNAME(QMB) +

DEFPSIST(YES)

DEFINE QLOCAL(QMB.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMB') +

Appendix

[93]

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMA') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMB) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMB') +

XMITQ(QMB.XMITQ) +

CONNAME('127.0.0.1(1451)')

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMB')

The Setup Procedures: Steps to Follow

[94]

From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_EP_AB.TXT

The queues we need for QMB are in SYSB_QMB_MQDEFS_EP_AB.TXT file:

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMB) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMB') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QLOCAL(CAPA.TO.APPB.RECVQ)
+

REPLACE +

DESCR('LOCAL RECEIVE QUEUE - APPB
FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMB.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMB.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

Appendix

[95]

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

CONNAME('127.0.0.1(1450)')

DEFINE CHANNEL(QMA.TO.QMB) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_EP_AB.TXT

Starting the Listeners
Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

Follow the instructions in the Unidirectional replication—The WebSphere MQ layer—
Testing the WebSphere MQ layer section.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Setup Procedures: Steps to Follow

[96]

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Publication Queue Map, and the XML Publication. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating a Publication Queue Map from DB2A to DB2B
•	 Creating an XML Publication

Creating Q Capture control tables on DB2A
Follow the instructions in the Unidirectional replication—The Q replication layer—
Creating Q Capture control tables on DB2A section.

Creating a Publication Queue Map from
DB2A to DB2B
The Publication Queue Map for the queues going from DB2A to DB2B can be created
using the following ASNCLP commands in the SYSA_crt_pqma2b.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET CAPTURE SCHEMA SOURCE ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE PUBQMAP "PQMA2B"
USING
SENDQ "CAPA.TO.APPB.SENDQ.REMOTE"
MESSAGE CONTENT TYPE T
ERROR ACTION S
HEARTBEAT INTERVAL 0
HEADER NONE;

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_pqma2b.asnclp

Creating the XML Publication
The file to create the XML publication is called SYSA_crt_xmlpub.asnclp.

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;
SET SERVER CAPTURE TO DB DB2A;

Appendix

[97]

SET CAPTURE SCHEMA SOURCE ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE XML PUB (PUBNAME PUBA2B
PUBQMAP "PQMA2B"
ERIC.T1
COLS ALL
ALL CHANGED ROWS Y
BEFORE VALUES Y
CHANGED COLS ONLY N
HAS LOAD PHASE N
SUPPRESS DELETES N);

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_xmlpub.asnclp

Starting Q Capture on DB2A
Follow the instructions in the Unidirectional replication—Starting Q Capture and Q
Apply—Starting Q Capture on DB2A section.

Testing publication
•	 To test an INSERT statement.

From CLP-A, issue:
$ db2 "insert into eric.t1 values(1,1,'J')"

The local Receive Queue on QMB, which will receive the messages from QMA is
called CAPA.TO.APPB.RECVQ. We cannot use the amqsget program to retrieve
messages from this queue, because the message length is greater than 101
bytes. If we try, we will get:
$ amqsget CAPA.TO.APPB.RECVQ QMB

Sample AMQSGET0 start

MQGET ended with reason code 2080

Sample AMQSGET0 end

The reason code 2080 indicates that the message length is greater than the
101 bytes limit.
There are a couple of ways to view the messages on the QMB queue. We can use
the rfhutil utility, or the amqsbcg command—we will use this command:
$ amqsbcg CAPA.TO.APPB.RECVQ QMB

The Setup Procedures: Steps to Follow

[98]

AMQSBCG0 - starts here

 MQOPEN - 'CAPA.TO.APPB.RECVQ'

 MQGET of message number 1

****Message descriptor****

 StrucId : 'MD ' Version : 2

 Report : 0 MsgType : 8

 Expiry : -1 Feedback : 0

 Encoding : 546 CodedCharSetId : 1208

 Format : 'MQSTR '

 Priority : 0 Persistence : 1

 MsgId : X'515245504416E5D200000000000000000000000000000001'

 CorrelId : X'000
0'

 BackoutCount : 0

 ReplyToQ : '
'

 ReplyToQMgr : 'QMA
'

 ** Identity Context

 UserIdentifier : 'db2admin '

 AccountingToken :

 X'16010515000000B4B7CD226BD6620407E53B2BEE03000000000000000
000000B'

 ApplIdentityData : ' '

 ** Origin Context

 PutApplType : '11'

 PutApplName : 's\IBM\SQLLIB\BIN\asnqcap.exe'

 PutDate : '20060314' PutTime : '15483465'

 ApplOriginData : ' '

 GroupId : X'00'

 MsgSeqNumber : '1'

 Offset : '0'

 MsgFlags : '0'

 OriginalLength : '-1'

**** Message ****

 length - 603 bytes

00000000: 3C3F 786D 6C20 7665 7273 696F 6E3D 2231 '<?xml
version="1'

Appendix

[99]

00000010: 2E30 2220 656E 636F 6469 6E67 3D22 5554 '.0"
encoding="UT'

00000020: 462D 3822 203F 3E3C 6D73 6720 786D 6C6E 'F-8" ?><msg
xmln'

00000030: 733A 7873 693D 2268 7474 703A 2F2F 7777
's:xsi="http://ww'

00000040: 772E 7733 2E6F 7267 2F32 3030 312F 584D 'w.w3.
org/2001/XM'

00000050: 4C53 6368 656D 612D 696E 7374 616E 6365 'LSchema-
instance'

00000060: 2220 7873 693A 6E6F 4E61 6D65 7370 6163 '"
xsi:noNamespac'

00000070: 6553 6368 656D 614C 6F63 6174 696F 6E3D
'eSchemaLocation='

00000080: 226D 7163 6170 2E78 7364 2220 7665 7273 '"mqcap.xsd"
vers'

00000090: 696F 6E3D 2231 2E30 2E30 2220 6462 4E61 'ion="1.0.0"
dbNa'

000000A0: 6D65 3D22 4442 3241 223E 3C73 7562 5363
'me="DB2A"><subSc'

000000B0: 6865 6D61 2073 7562 4E61 6D65 3D22 5055 'hema
subName="PU'

000000C0: 4241 3242 2220 7372 634F 776E 6572 3D22 'BA2B"
srcOwner="'

000000D0: 4552 4943 2220 7372 634E 616D 653D 2254 'ERIC"
srcName="T'

000000E0: 3122 2073 656E 6451 4E61 6D65 3D22 4341 '1"
sendQName="CA'

000000F0: 5041 2E54 4F2E 4150 5042 2E53 454E 4451 'PA.TO.APPB.
SENDQ'

00000100: 2E52 454D 4F54 4522 2061 6C6C 4368 616E '.REMOTE"
allChan'

00000110: 6765 6452 6F77 733D 2231 2220 6265 666F 'gedRows="1"
befo'

00000120: 7265 5661 6C75 6573 3D22 3122 2063 6861
'reValues="1" cha'

00000130: 6E67 6564 436F 6C73 4F6E 6C79 3D22 3022
'ngedColsOnly="0"'

00000140: 2068 6173 4C6F 6164 5068 6173 653D 226E '
hasLoadPhase="n'

00000150: 6F6E 6522 2064 6253 6572 7665 7254 7970 'one"
dbServerTyp'

The Setup Procedures: Steps to Follow

[100]

00000160: 653D 2251 4442 322F 4E54 2220 6462 496E 'e="QDB2/NT"
dbIn'

00000170: 7374 616E 6365 3D22 4442 3222 2064 6252
'stance="DB2" dbR'

00000180: 656C 6561 7365 3D22 392E 312E 3022 2063
'elease="9.1.0" c'

00000190: 6170 5265 6C65 6173 653D 2239 2E31 2E30
'apRelease="9.1.0'

000001A0: 223E 3C63 6F6C 206E 616D 653D 2243 3122 '"><col
name="C1"'

000001B0: 2074 7970 653D 2269 6E74 6567 6572 2220 '
type="integer" '

000001C0: 6C65 6E3D 2234 2220 636F 6465 7061 6765 'len="4"
codepage'

000001D0: 3D22 3022 2069 734B 6579 3D22 3122 2F3E '="0"
isKey="1"/>'

000001E0: 3C63 6F6C 206E 616D 653D 2243 3222 2074 '<col
name="C2" t'

000001F0: 7970 653D 2269 6E74 6567 6572 2220 6C65
'ype="integer" le'

00000200: 6E3D 2234 2220 636F 6465 7061 6765 3D22 'n="4"
codepage="'

00000210: 3022 2F3E 3C63 6F6C 206E 616D 653D 2243 '0"/><col
name="C'

00000220: 3322 2074 7970 653D 2263 6861 7222 206C '3"
type="char" l'

00000230: 656E 3D22 3130 2220 636F 6465 7061 6765 'en="10"
codepage'

00000240: 3D22 3132 3532 222F 3E3C 2F73 7562 5363 '="1252"/></
subSc'

00000250: 6865 6D61 3E3C 2F6D 7367 3E 'hema></msg> '

 MQGET of message number 2

****Message descriptor****

 StrucId : 'MD ' Version : 2

 Report : 0 MsgType : 8

 Expiry : -1 Feedback : 0

 Encoding : 546 CodedCharSetId : 1208

 Format : 'MQSTR '

 Priority : 0 Persistence : 1

Appendix

[101]

 MsgId : X'515245504416E5D200000000000000000000000000000002'

 CorrelId : X'000
0'

 BackoutCount : 0

 ReplyToQ : '
'

 ReplyToQMgr : 'QMA
'

 ** Identity Context

 UserIdentifier : 'db2admin '

 AccountingToken :

 X'16010515000000B4B7CD226BD6620407E53B2BEE03000000000000000
000000B'

 ApplIdentityData : ' '

 ** Origin Context

 PutApplType : '11'

 PutApplName : 's\IBM\SQLLIB\BIN\asnqcap.exe'

 PutDate : '20060314' PutTime : '15514671'

 ApplOriginData : ' '

 GroupId : X'00'

 MsgSeqNumber : '1'

 Offset : '0'

 MsgFlags : '0'

 OriginalLength : '-1'

**** Message ****

 length - 1071 bytes

00000000: 3C3F 786D 6C20 7665 7273 696F 6E3D 2231 '<?xml
version="1'

00000010: 2E30 2220 656E 636F 6469 6E67 3D22 5554 '.0"
encoding="UT'

00000020: 462D 3822 203F 3E3C 6D73 6720 786D 6C6E 'F-8" ?><msg
xmln'

00000030: 733A 7873 693D 2268 7474 703A 2F2F 7777
's:xsi="http://ww'

00000040: 772E 7733 2E6F 7267 2F32 3030 312F 584D 'w.w3.
org/2001/XM'

00000050: 4C53 6368 656D 612D 696E 7374 616E 6365 'LSchema-
instance'

00000060: 2220 7873 693A 6E6F 4E61 6D65 7370 6163 '"
xsi:noNamespac'

The Setup Procedures: Steps to Follow

[102]

00000070: 6553 6368 656D 614C 6F63 6174 696F 6E3D
'eSchemaLocation='

00000080: 226D 7163 6170 2E78 7364 2220 7665 7273 '"mqcap.xsd"
vers'

00000090: 696F 6E3D 2231 2E30 2E30 2220 6462 4E61 'ion="1.0.0"
dbNa'

000000A0: 6D65 3D22 4442 3241 223E 3C74 7261 6E73
'me="DB2A"><trans'

000000B0: 2061 7574 6849 443D 2244 4232 4144 4D49 '
authID="DB2ADMI'

000000C0: 4E22 2069 734C 6173 743D 2231 2220 7365 'N"
isLast="1" se'

000000D0: 676D 656E 744E 756D 3D22 3122 2063 6D69
'gmentNum="1" cmi'

000000E0: 744C 534E 3D22 3030 3030 3A30 3030 303A
'tLSN="0000:0000:'

000000F0: 3030 3030 3A30 3138 653A 6532 3330 2220
'0000:018e:e230" '

00000100: 636D 6974 5469 6D65 3D22 3230 3036 2D30
'cmitTime="2006-0'

00000110: 332D 3134 5431 353A 3531 3A34 312E 3030 '3-
14T15:51:41.00'

00000120: 3030 3031 223E 3C69 6E73 6572 7452 6F77
'0001"><insertRow'

00000130: 2073 7562 4E61 6D65 3D22 5055 4241 3242 '
subName="PUBA2B'

00000140: 2220 2020 2020 2020 2020 2020 2020 2020 '" '

00000150: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000160: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000170: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000180: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000190: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001A0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001B0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001C0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001D0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001E0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000001F0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000200: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000210: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

Appendix

[103]

00000220: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000230: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000240: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000250: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000260: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000270: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000280: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000290: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002A0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002B0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002C0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002D0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002E0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000002F0: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000300: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000310: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000320: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000330: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000340: 2020 2020 2020 2020 2020 2073 7263 4F77 ' srcOw'

00000350: 6E65 723D 2245 5249 4322 2073 7263 4E61 'ner="ERIC"
srcNa'

00000360: 6D65 3D22 5431 2220 696E 7465 6E74 5345 'me="T1"
intentSE'

00000370: 513D 2230 3030 303A 3030 3030 3A30 3030
'Q="0000:0000:000'

00000380: 303A 3031 3865 3A65 3161 6122 3E3C 636F
'0:018e:e1aa"><co'

00000390: 6C20 6E61 6D65 3D22 4331 2220 6973 4B65 'l name="C1"
isKe'

000003A0: 793D 2231 223E 3C69 6E74 6567 6572 3E31
'y="1"><integer>1'

000003B0: 3C2F 696E 7465 6765 723E 3C2F 636F 6C3E '</
integer></col>'

000003C0: 3C63 6F6C 206E 616D 653D 2243 3222 3E3C '<col
name="C2"><'

000003D0: 696E 7465 6765 723E 313C 2F69 6E74 6567 'integer>1</
integ'

000003E0: 6572 3E3C 2F63 6F6C 3E3C 636F 6C20 6E61 'er></
col><col na'

000003F0: 6D65 3D22 4333 223E 3C63 6861 723E 4A20
'me="C3"><char>J '

00000400: 2020 2020 2020 2020 3C2F 6368 6172 3E3C ' </
char><'

The Setup Procedures: Steps to Follow

[104]

00000410: 2F63 6F6C 3E3C 2F69 6E73 6572 7452 6F77 '/col></
insertRow'

00000420: 3E3C 2F74 7261 6E73 3E3C 2F6D 7367 3E '></trans></
msg> '

 No more messages

 MQCLOSE

 MQDISC

C:\>

We can see our inserted row at the bottom of message (2). We can see the
values that we entered and that it was an insert operation.

•	 Test an UPDATE statement. Update the row, then:
From CLP-A, issue:
$ db2 "update eric.t1 set c3 = 'T' where c1 = 1"

Next, run the amqsbcg command:
$ amqsbcg CAPA.TO.APPB.RECVQ QMB

Only the bottom of the output is shown:
00000340: 2020 2020 2020 2020 2020 2073 7263 4F77 '
srcOw'

00000350: 6E65 723D 2245 5249 4322 2073 7263 4E61 'ner="ERIC"
srcNa'

00000360: 6D65 3D22 5431 2220 696E 7465 6E74 5345 'me="T1"
intentSE'

00000370: 513D 2230 3030 303A 3030 3030 3A30 3030
'Q="0000:0000:000'

00000380: 303A 3031 3865 3A65 6366 6122 3E3C 636F
'0:018e:ecfa"><co'

00000390: 6C20 6E61 6D65 3D22 4331 2220 6973 4B65 'l name="C1"
isKe'

000003A0: 793D 2231 223E 3C69 6E74 6567 6572 3E3C
'y="1"><integer><'

000003B0: 6166 7465 7256 616C 3E31 3C2F 6166 7465
'afterVal>1</afte'

000003C0: 7256 616C 3E3C 2F69 6E74 6567 6572 3E3C 'rVal></
integer><'

000003D0: 2F63 6F6C 3E3C 636F 6C20 6E61 6D65 3D22 '/col><col
name="'

000003E0: 4332 223E 3C69 6E74 6567 6572 3E3C 6166
'C2"><integer><af'

Appendix

[105]

000003F0: 7465 7256 616C 3E31 3C2F 6166 7465 7256 'terVal>1</
afterV'

00000400: 616C 3E3C 2F69 6E74 6567 6572 3E3C 2F63 'al></
integer></c'

00000410: 6F6C 3E3C 636F 6C20 6E61 6D65 3D22 4333 'ol><col
name="C3'

00000420: 223E 3C63 6861 723E 3C62 6566 6F72 6556
'"><char><beforeV'

00000430: 616C 3E4A 2020 2020 2020 2020 203C 2F62 'al>J
</b'

00000440: 6566 6F72 6556 616C 3E3C 6166 7465 7256
'eforeVal><afterV'

00000450: 616C 3E54 2020 2020 2020 2020 203C 2F61 'al>T
</a'

00000460: 6674 6572 5661 6C3E 3C2F 6368 6172 3E3C 'fterVal></
char><'

00000470: 2F63 6F6C 3E3C 2F75 7064 6174 6552 6F77 '/col></
updateRow'

00000480: 3E3C 2F74 7261 6E73 3E3C 2F6D 7367 3E '></trans></
msg> '

We can see our updated row at the bottom of the third message. We can see
the values that the operation was an update operation and the before and
after values of what was updated.
We can see that the Event Publishing setup is working.

Replication to a stored procedure
The setup we will use is shown in the following diagram:

The Setup Procedures: Steps to Follow

[106]

The process of defining the unidirectional subscription with a stored procedure as
the target is similar to defining unidirectional subscription with a target table except
that in the target selection process, we specify the stored procedure as the target
instead of an existing table or creating a new physical table.

The database layer
We need to create two databases—a source database called DB2A and a target database
called DB2B—follow the instructions in the First steps—Database creation section.

We now have the database layer defined and can proceed to the WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB—follow the
instructions in the First steps—Queue Manager processing section.

Create the MQ queues as for unidirectional replication, as described in the
Unidirectional replication—The WebSphere MQ layer—Creating the Queue Managers
and queues section.

Starting the Listeners
Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

Testing the WebSphere MQ layer
Now that everything is started we need to test the MQ layer. Refer to the
Unidirectional replication—The WebSphere MQ layer—Testing the WebSphere MQ layer
section for a description of the tests.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

Appendix

[107]

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps and the Q subscription.

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating the source/target tables and the stored procedure
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Q subscription

Creating Q Capture control tables on DB2A
Follow the instructions in the Unidirectional replication—The Q replication layer—
Creating Q Capture control tables on DB2A section.

Creating Q Apply control tables on DB2B
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Apply control tables on DB2B section.

Creating the source/target tables/stored procedure
Note that the stored procedure name is the same as the source table name, refer to
the The different types of Q replication—Replicating to a stored procedure section of
Chapter 1, Q Replication Overview.

To create the source table DB2ADMIN.EMPL on DB2A:

From CLP-A, issue:

$ db2" CREATE TABLE db2admin.empl (EMPNO INTEGER NOT NULL, FIRSTNAME
VARCHAR (15) NOT NULL, LASTNAME VARCHAR (15) NOT NULL, SALARY DECIMAL
NOT NULL, PRIMARY KEY (EMPNO))"

To create the actual target table DB2ADMIN.T_EMPL on DB2B:

From CLP-B, issue:

$ db2" create table db2admin.t_empl (op_code integer, rep_time timestamp,
empno_before integer, empno_after integer, new_firstname varchar(15),
new_lastname varchar(15), new_salary decimal)"

The Setup Procedures: Steps to Follow

[108]

The following shows the stored procedure in a file called STOREP.TXT:

CREATE PROCEDURE DB2ADMIN.EMPLSP (
 INOUT operation integer,
 IN suppression_ind VARCHAR(90) ,
 IN SRC_COMMIT_LSN char(10) for bit data ,
 IN SRC_TRANS_TIME timestamp,
 IN XEMPNO integer,
 IN EMPNO integer,
 IN firstname	 varchar(15),
 IN lastname	 varchar(15),
 IN salary	 decimal(5,0))

BEGIN
DECLARE SQLCODE INTEGER ;
DECLARE old_empno integer;
declare new_empno integer;
declare new_firstname varchar(15);
declare new_lastname varchar(15);
declare new_salary decimal(5,0);
DECLARE suppressid varchar(90);
DECLARE operationid integer;
declare rep_time timestamp;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET OPERATION = sqlcode;
DECLARE EXIT HANDLER FOR SQLWARNING
SET OPERATION = sqlcode;
DECLARE EXIT HANDLER FOR NOT FOUND
SET OPERATION = sqlcode;
set operationid = operation;
set rep_time = SRC_TRANS_TIME;
set suppressid = suppression_ind;
set old_empno = xempno ;
set new_empno = empno;
set new_firstname = firstname;
set new_lastname = lastname;
set new_salary = salary;

insert into db2admin.t_empl values
(operationid, rep_time, old_empno, new_empno, new_firstname, new_
lastname,
new_salary);
set operation = sqlcode;
END @

Appendix

[109]

Note that the stored procedure returns an SQL return code to Q Apply (set operation
= sqlcode;) and that we do not specify a ROLLBACK or COMMIT statement, because it is
the responsibility of Q Apply to rollback or commit the transaction.

The type of operation that was performed on the source table is transmitted to the
stored procedure through an operation value. The following table shows the operation
values that Q Apply passes to the stored procedure and what each value means. SQL
return codes that Q Apply passes to the stored pro

Op Value Type of operation: Op Value Type of operation:
16 Insert 64 Delete
32 Update to non-key columns 128 Update to key columns
34 Update and append

Create the stored procedure as follows:

From CLP-B, run the file as:

$ db2 -td@ -f c:\asnclp\storep.txt

Creating a Replication Queue Map from
DB2A to DB2B
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
a Replication Queue Map from DB2A to DB2B section.

Creating a Q subscription
The file to create a stored procedure Q subscription is called SYSA_crt_qsub_
sp.asnclp:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME EMPLT DB2ADMIN.EMPL
OPTIONS

The Setup Procedures: Steps to Follow

[110]

HAS LOAD PHASE N

EXIST TARGET

NAME DB2ADMIN.EMPLSP

TYPE STOREDPROC

CONFLICT ACTION F

LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_sp.asnclp

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A
Follow the instructions in the Unidirectional replication—Starting Q Capture and Q
Apply—Starting Q Capture on DB2A section.

Starting Q Apply on DB2B
Follow the instructions in the Unidirectional replication—Starting Q Capture and Q
Apply—Starting Q Apply on DB2B section.

Testing replication
We will test replication to a stored procedure by inserting a row into the source table
DB2ADMIN.EMPL on DB2A and check the target table DB2ADMIN.T_EMPL on DB2B.

From CLP-A, issue:

$ db2 "insert into db2admin.empl values(12345,'Carrie','Princess',41000)"

Now check what has happened on DB2B.

From CLP-B, issue:

$ db2 "select * from db2admin.t_empl"

OP_CODE REP_TIME EMPNO_BEFORE EMPNO_AFTER

 16 2006-03-15-06.30.48.000001 - 12345

NEW_FIRSTNAME NEW_LASTNAME NEW_SALARY

Carrie Princess 41000.

Appendix

[111]

We can see that the table we specified in the stored procedure (DB2ADMIN.T_EMPL)
is populated.

We have now finished looking at replicating to a stored procedure.

Replication to a CCD table
The setup we will use is shown in the following diagram:

The test tables ERIC.T1/2/3/4 only exist on DB2A—Q Apply will create the
appropriate CCD tables on DB2B.

The database layer
We need to create two databases, a source database called DB2A and a target database
called DB2B—follow the instructions in the First steps—Database creation section.

We now have the database layer defined and can proceed to the WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB—follow the
instructions in the First steps—Queue Manager processing section.

The Setup Procedures: Steps to Follow

[112]

Create the MQ queues as for unidirectional replication, described in the Unidirectional
replication—The WebSphere MQ layer—Creating the Queue Managers and queues section.

Starting the Listeners
Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

Testing the WebSphere MQ layer
Follow the instructions in the Unidirectional replication—The WebSphere MQ layer—Test
the WebSphere MQ layer section.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps and the Q subscription. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Q subscription

Creating Q Capture control tables on DB2A
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Capture control tables on DB2A section.

Creating Q Apply control tables on DB2B
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Apply control tables on DB2B section.

Appendix

[113]

Creating a Replication Queue Map from
DB2A to DB2B
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
a Replication Queue Map from DB2A to DB2B section.

Creating a Q subscription
The files to create the CCD Q subscription are called
SYSA_crt_qsub_ccd_<type>.asnclp. Where <type> is:

•	 T1: complete + condensed
•	 T2: complete + non-condensed
•	 T3: non-complete + condensed
•	 T4: non-complete + non-condensed

The OPTIONS block of the Q subscription definition depends on the type of
CCD table required:

The Setup Procedures: Steps to Follow

[114]

Note that the source and target tables are different for each scenario.

T1—Q Sub for COMPLETE=Y and CONDENSED=Y
We will use a source and target table called ERIC.T1. The source table was created as
part of the setup script, the target table will be created by Q Apply.

Create a Q subscription called TAB1 using the following ASNCLP commands in the
SYSA_crt_qsub_ccd_t1.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB1 ERIC.T1

OPTIONS
HAS LOAD PHASE I
SPILL_MODELQ "IBMQREP.SPILL.MODELQ"
TARGET NAME ERIC.T1
TYPE CCD
CONDENSED ON
COMPLETE ON
KEYS (C1)
CONFLICT RULE K
CONFLICT ACTION F
ERROR ACTION Q
LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_ccd_t1.asnclp

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, conflict_rule as CR,
conflict_action as CA, ccd_condensed as CON, CCD_COMPLETE as COM from
asn.ibmqrep_targets"

SUBNAME CR CA CON COM
---------- -- -- --- ---
TAB1 K F Y Y

Appendix

[115]

For a subname of TAB1, check that the CON column (condensed) is Y and the
COM column (complete) is Y.

We can check whether we are sending before values and only for columns which
have been changed, using the following query:

From CLP-A, issue:

$ db2 "select substr(subname,1,10) as subname, before_values, changed_
cols_only from asn.ibmqrep_subs"

SUBNAME BEFORE_VALUES CHANGED_COLS_ONLY

---------- ------------- -----------------

TAB1 Y N

We can check the key column(s) of the target table using the following query:

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, is_key, substr(source_
colname,1,20) as source_column from asn.ibmqrep_trg_cols where subname =
'TAB1'"

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB1 Y C1

TAB1 N C2

TAB1 N C3

TAB1 N IBMSNAP_COMMITSEQ

TAB1 N IBMSNAP_INTENTSEQ

TAB1 N IBMSNAP_LOGMARKER

TAB1 N IBMSNAP_OPERATION

We should see that for our Q subscription of TAB1, we have C1 as a key column.

The IS_KEY column contains a flag that indicates whether the source column is part
of the key for the source table. If the value of this flag does not match the target
table key definition, Q Apply rejects the schema message and invalidates the Q
subscription:

•	 Y: The column is part of the source table key.
•	 N: The column is not part of the source table key.

The Setup Procedures: Steps to Follow

[116]

Note that if we had defined the source table without a primary key or unique
index and the KEYS keyword was not used to specify a key for replication, then the
command automatically defines a replication key that includes all the replicated
target columns.

So what would have happened if we had not put the in the KEYS parameter in our Q
subscription definition, as shown next:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB1NK ERIC.T1
OPTIONS
HAS LOAD PHASE I
SPILL_MODELQ "IBMQREP.SPILL.MODELQ"
TARGET NAME ERIC.T1NKEYS
TYPE CCD
CONDENSED ON
COMPLETE ON
CONFLICT ACTION F
LOAD TYPE 0);

Then Q Apply would automatically take the key column from the source table.
If we select from the IBMQREP_TRG_COLS table as previously (but with subname =
'TAB1NK'), then we see that the IS_KEY is still set to Y for column C1.

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB1NK Y C1

TAB1NK N C2

TAB1NK N C3

TAB1NK N IBMSNAP_COMMITSEQ

TAB1NK N IBMSNAP_INTENTSEQ

TAB1NK N IBMSNAP_LOGMARKER

TAB1NK N IBMSNAP_OPERATION

Appendix

[117]

So let's create a new source table called ERIC.T1NK2, which does not have a primary
key and create a new Q subscription and see what is in the IS_KEY column.

From CLP-A, issue:

$ db2 "CREATE TABLE ERIC.T1NK2(c1 INT, c2 INT, c3 CHAR(10))"

If we create the Q subscription using the following commands:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB1NK2 ERIC.T1NK2
OPTIONS
HAS LOAD PHASE I SPILL_MODELQ "IBMQREP.SPILL.MODELQ"
TARGET NAME ERIC.T1NK2
TYPE CCD
CONDENSED ON
COMPLETE ON
CONFLICT ACTION F
LOAD TYPE 0);

If we select from the IBMQREP_TRG_COLS table as previously (but with subname =
'TAB1NK2'), then we see that the IS_KEY is set to Y for columns C1, C2 and C3:

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB1NK2 Y C1

TAB1NK2 Y C2

TAB1NK2 Y C3

TAB1NK2 N IBMSNAP_COMMITSEQ

TAB1NK2 N IBMSNAP_INTENTSEQ

TAB1NK2 N IBMSNAP_LOGMARKER

TAB1NK2 N IBMSNAP_OPERATION

The Setup Procedures: Steps to Follow

[118]

We can see that all the columns are keys.

Now let's go back to the original Q subscription and test replicating to this type
of CCD table.

We will initially have ERIC.T1 populated with two rows and then insert a row,
update a row, and delete a row.

1.	 Initially populate ERIC.T1. From CLP-A, issue:
$ db2 "insert into eric.t1 values (1,1,'J')"

$ db2 "insert into eric.t1 values (2,2,'H')"

2.	 Start Q Capture. From CLP-A, issue:
$ start asnqcap CAPTURE_SERVER=db2a STARTMODE=warmsi

3.	 Start Q Apply. From CLP-B, issue:
$ start asnqapp APPLY_SERVER=db2b

4.	 Check if the initial load has been performed. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ . .
.>
 1 1 J x'00000000000000000000' . .
.>
 2 2 H x'00000000000000000000'
IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_
LOGMARKER
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000000000001' I 2006-06-12-
05.26.54.781002

We should see two rows as shown in the preceding table. The initial load has
been performed.

5.	 Insert a row into ERIC.T1. From CLP-A, issue:
$ db2 "insert into eric.t1 values (3,3,'T')"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ . . .>
 1 1 J x'00000000000000000000' >
 2 2 H x'00000000000000000000' >
 3 3 T x'00000000000001BBADB9' >

Appendix

[119]

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_
LOGMARKER
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000001BBAE3F' I 2006-06-12-
04.29.14.000001

We can see that, we now have three rows in the table.

6.	 Insert another row into ERIC.T1. From CLP-A, issue:
$ db2 "insert into eric.t1 values (4,4,'T')"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ
 1 1 J x'00000000000000000000'>
 2 2 H x'00000000000000000000'>
 3 3 T x'00000000000001BBADB9'>
 4 4 T x'00000000000001BBAE65'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_
LOGMARKER
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000001BBAE3F' I 2006-06-12-
04.29.14.000001
x'00000000000001BBAEEB' I 2006-06-12-
04.30.36.000001

We can see that, we now have four rows in the table.

7.	 Update a row in ERIC.T1. From CLP-A, issue:
$ db2 "update eric.t1 set c2 = 4 where c1 = 2 "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 4 H x'00000000000001BBAF11'>

The Setup Procedures: Steps to Follow

[120]

 3 3 T x’00000000000001BBADB9’>
 4 4 T x'00000000000001BBAE65'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000001BBAF85' U 2006-06-12-
04.31.23.000001
x'00000000000001BBAE3F' I 2006-06-12-
04.29.14.000001
x'00000000000001BBAEEB' I 2006-06-12-
04.30.36.000001

We can see the entry for the row we updated (in bold). Because we specified
COMPLETE=Y and CONDENSED=Y we still only have four rows, but they
represent the latest values.

8.	 Update the same row in ERIC.T1. From CLP-A, issue:
$ db2 "update eric.t1 set c2 = 5 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000' >

 2 5 H x'00000000000001BBB272' >

 3 3 T x'00000000000001BBADB9' >

 4 4 T x'00000000000001BBAE65' >

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.26.54.781002

x'00000000000001BBB2E6' U 2006-06-12-
04.34.02.000001

x'00000000000001BBAE3F' I 2006-06-12-
04.29.14.000001

x'00000000000001BBAEEB' I 2006-06-12-
04.30.36.000001

We can see the entry for the row we updated. Because we specified
COMPLETE=Y and CONDENSED=Y we still only have four rows, but they
represent the latest values.

Appendix

[121]

9.	 Delete a row from ERIC.T1. From CLP-A, issue:
$ db2 "delete from eric.t1 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t1"

C1 C2 C3 IBMSNAP_INTENTSEQ >
 1 1 J x'00000000000000000000' >
 2 5 H x'00000000000001BBB30C' >
 3 3 T x'00000000000001BBADB9' >
 4 4 T x'00000000000001BBAE65' >

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER
x'00000000000000000001' I 2006-06-12-
05.26.54.781002
x'00000000000001BBB391' D 2006-06-12-
04.35.37.000001
x'00000000000001BBAE3F' I 2006-06-12-
04.29.14.000001
x'00000000000001BBAEEB' I 2006-06-12-
04.30.36.000001

We can see the delete operation. We still have four rows in our target table.
We have now finished testing the CCD replication specifying COMPLETE=Y
and CONDENSED=Y.

T2—Q Sub for COMPLETE=Y and CONDENSED=N
We will use a source and target table called ERIC.T2. Create a Q subscription called
TAB2 using the following ASNCLP SYSA_crt_qsub_ccd_t2.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;

SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;

SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB

USING REPLQMAP RQMA2B

(SUBNAME TAB2 ERIC.T2

OPTIONS

The Setup Procedures: Steps to Follow

[122]

HAS LOAD PHASE I

SPILL_MODELQ "IBMQREP.SPILL.MODELQ"

TARGET NAME ERIC.T2

TYPE CCD

CONDENSED OFF

COMPLETE ON

KEYS (C1)

CONFLICT ACTION F

LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_ccd_t2.asnclp

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, conflict_rule as CR,
conflict_action as CA, ccd_condensed as CON, CCD_COMPLETE as COM from
asn.ibmqrep_targets"

SUBNAME CR CA CON COM

---------- -- -- --- ---

TAB1 K F Y Y

TAB2 K F N Y

For a subname of TAB2 check that the CON column (condensed) is N and the COM
column (complete) is Y.

From CLP-A, issue:

$ db2 "select substr(subname,1,10) as subname, before_values, changed_
cols_only from asn.ibmqrep_subs"

SUBNAME BEFORE_VALUES CHANGED_COLS_ONLY

---------- ------------- -----------------

TAB1 Y N

TAB2 Y N

We should see for TAB2 a BEFORE_VALUES value of Y and a CHANGED_COLS_ONLY
value of N.

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, is_key, substr(source_
colname,1,20) as source_column from asn.ibmqrep_trg_cols where subname =
'TAB2' "

Appendix

[123]

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB2 Y C1
TAB2 Y C2
TAB2 Y C3
TAB2 N IBMSNAP_COMMITSEQ
TAB2 N IBMSNAP_INTENTSEQ
TAB2 N IBMSNAP_LOGMARKER
TAB2 N IBMSNAP_OPERATION

Test CCD replication for COMPLETE=Y and CONDENSED=N.

We will initially have ERIC.T2 populated by two rows and then insert a row, update
a row, and delete a row.

1.	 Initially populate ERIC.T2. From CLP-A, issue:
$ db2 "insert into eric.t2 values (1,1,'J') "
$ db2 "insert into eric.t2 values (2,2,'H') "

2.	 Issue a CAPSTART command.
We need to issue a CAPSTART command to activate the new Q subscription
because Q Capture and Q Apply are already running (from the previous
section).
Use the ASNCLP SYSA_qsub_start_t2.asnclp file:
ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

START QSUB SUBNAME TAB2;

From CLP-A, issue:
$ asnclp -f SYSA_qsub_start_t2.asnclp

3.	 Check that the Q subscription is active. From CLP-A, issue:
$ db2 "select substr(subname,1,10) as subname, state from asn.
ibmqrep_subs"

SUBNAME STATE
---------- -----
TAB1 A
TAB2 A

The Setup Procedures: Steps to Follow

[124]

We can see that our Q subscription for TAB2 has a STATE of A which
means active.

4.	 Check if the initial load has been performed. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

We can see that we have two records in our target table. The initial load has
been performed.

5.	 Insert a row into ERIC.T2. From CLP-A, issue:
$ db2 "insert into eric.t2 values (3,3,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ
1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000' . .
. . .>

 3 3 T x'00000000000001BBD70C' . .
. . .>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_
LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000001BBD792' I 2006-06-12-
04.46.15.000001

We can see that, we now have three rows in the table.

Appendix

[125]

6.	 Insert another row into ERIC.T2. From CLP-A, issue:
$ db2 "insert into eric.t2 values (4,4,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000'>

 3 3 T x'00000000000001BBD70C'>

 4 4 T x'00000000000001BBD7B8'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000001BBD792' I 2006-06-12-
04.46.15.000001

x'00000000000001BBD83E' I 2006-06-12-
04.47.25.000001

We can see that we now have four rows in the table.

7.	 Update a row in ERIC.T2. From CLP-A, issue:
$ db2 "update eric.t2 set c2 = 4 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000'

 3 3 T x'00000000000001BBD70C'>

 4 4 T x'00000000000001BBD7B8'>

 2 4 H x'00000000000001BBDC01'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

The Setup Procedures: Steps to Follow

[126]

x'00000000000001BBD792' I 2006-06-12-
04.46.15.000001

x'00000000000001BBD83E' I 2006-06-12-
04.47.25.000001

x'00000000000001BBDC75' U 2006-06-12-
04.48.40.000001

We can see that we now have five rows in our target table. Because we
specified COMPLETE=Y and CONDENSED=N.

8.	 Update the same row in ERIC.T2. From CLP-A, issue:
$ db2 "update eric.t2 set c2 = 5 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000'>

 3 3 T x'00000000000001BBD70C'>

 4 4 T x'00000000000001BBD7B8'>

 2 4 H x'00000000000001BBDC01'>

 2 5 H x'00000000000001BBDC9B'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000001BBD792' I 2006-06-12-
04.46.15.000001

x'00000000000001BBD83E' I 2006-06-12-
04.47.25.000001

x'00000000000001BBDC75' U 2006-06-12-
04.48.40.000001

x'00000000000001BBDD0F' U 2006-06-12-
04.49.56.000001

We can see that we now have six rows in our target table.

9.	 Delete a row from ERIC.T2. From CLP-A, issue:
$ db2 "delete from eric.t2 where c1 = 2"

Appendix

[127]

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t2"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 1 1 J x'00000000000000000000'>

 2 2 H x'00000000000000000000'>

 3 3 T x'00000000000001BBD70C'>

 4 4 T x'00000000000001BBD7B8'>

 2 4 H x'00000000000001BBDC01'>

 2 5 H x'00000000000001BBDC9B'>

 2 5 H x'00000000000001BBDD35'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000000000001' I 2006-06-12-
05.45.05.859004

x'00000000000001BBD792' I 2006-06-12-
04.46.15.000001

x'00000000000001BBD83E' I 2006-06-12-
04.47.25.000001

x'00000000000001BBDC75' U 2006-06-12-
04.48.40.000001

x'00000000000001BBDD0F' U 2006-06-12-
04.49.56.000001

x'00000000000001BBDDBA' D 2006-06-12-
04.51.08.000001

We now have seven rows in our target table. We can see the delete operation.
We have now finished testing the CCD replication specifying COMPLETE=Y
and CONDENSED=N.

T3—Q Sub for COMPLETE=N and CONDENSED=Y
We will use a source and target table called ERIC.T3.

Remember from the matrix, if we specify non complete, then the option for HAS LOAD
PHASE must be N (if we specify I, we will get an ASN2404E error message when we
try and create the Q subscription).

The Setup Procedures: Steps to Follow

[128]

Create a Q subscription called TAB3 using the ASNCLP
SYSA_crt_qsub_ccd_t3.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB3 ERIC.T3
OPTIONS
HAS LOAD PHASE N
TARGET NAME ERIC.T3
TYPE CCD
CONDENSED ON
COMPLETE OFF
KEYS(C1)
CONFLICT ACTION F
LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_ccd_t3.asnclp

$ db2 "select substr(subname,1,10) as subname, before_values, changed_
cols_only from asn.ibmqrep_subs"

SUBNAME BEFORE_VALUES CHANGED_COLS_ONLY
---------- ------------- -----------------
TAB1 Y N
TAB2 Y N
TAB3 Y N

We should see for TAB3 a BEFORE_VALUES value of Y and a CHANGED_COLS_ONLY
value of N.

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, conflict_rule as CR,
conflict_action as CA, ccd_condensed as CON, CCD_COMPLETE as COM from
asn.ibmqrep_targets"

Appendix

[129]

SUBNAME CR CA CON COM
---------- -- -- --- ---
TAB1 K F Y Y
TAB2 K F N Y
TAB3 K F Y N

For a subname of TAB3 check that the CON column (condensed) is Y and the COM
column (complete) is N.

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, is_key, substr(source_
colname,1,20) as source_column from asn.ibmqrep_trg_cols where subname =
'TAB3' "

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB3 Y C1

TAB3 N C2

TAB3 N C3

TAB3 N IBMSNAP_COMMITSEQ

TAB3 N IBMSNAP_INTENTSEQ

TAB3 N IBMSNAP_LOGMARKER

TAB3 N IBMSNAP_OPERATION

We can see that the key column is c1. Now we can test CCD replication for
COMPLETE=N and CONDENSED=Y.

We will initially have ERIC.T3 populated by two rows and then insert a row, update
a row, and delete a row.

1.	 Initially populate ERIC.T3. From CLP-A, issue:
$ db2 "insert into eric.t3 values (1,1,'J') "

$ db2 "insert into eric.t3 values (2,2,'H') "

2.	 Issue a CAPSTART command. Use the ASNCLP SYSA_qsub_start_t3.asnclp
file:
ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;

SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;

The Setup Procedures: Steps to Follow

[130]

SET APPLY SCHEMA ASN;

START QSUB SUBNAME TAB3;

From CLP-A, issue:
$ asnclp -f SYSA_qsub_start_t3.asnclp

3.	 Check that the Q subscription is active. From CLP-A, issue:
$ db2 "select substr(subname,1,10) as subname, state from asn.
ibmqrep_subs"

SUBNAME STATE

---------- -----

TAB1 A

TAB2 A

TAB3 A

We can see that our Q subscription for TAB3 has a STATE of A which
means active.

4.	 Check if an initial load has been performed. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION
IBMSNAP_LOGMARKER

----------- ----------- ---------- ---------------------------

We can see that there are no records in the target table. An initial load has
NOT been performed.

5.	 Insert a row into ERIC.T3. From CLP-A, issue:
$ db2 "insert into eric.t3 values (3,3,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BBF930'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BBF9B6' I 2006-06-12-
04.59.24.000001

We can see that, we now have one row in the target table, which is our
inserted row.

Appendix

[131]

6.	 Insert another row into ERIC.T3. From CLP-A, issue:
$ db2 "insert into eric.t3 values (4,4,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BBF930'>

 4 4 T x'00000000000001BBF9DC'

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BBF9B6' I 2006-06-12-
04.59.24.000001

x'00000000000001BBFA62' I 2006-06-12-
05.00.30.000001

We can see that, we now have two rows in the target table, which are our
inserted rows.

7.	 Update a row in ERIC.T3. From CLP-A, issue:
$ db2 "update eric.t3 set c2 = 4 where c1 = 3"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 4 T x'00000000000001BBFA88'>

 4 4 T x'00000000000001BBF9DC'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BBFAFC' U 2006-06-12-
05.01.40.000001

x'00000000000001BBFA62' I 2006-06-12-
05.00.30.000001

We can see that we now have two rows in our target table. The highlighted
letter shown is our updated row.

8.	 Update the same row in ERIC.T3. From CLP-A, issue:
$ db2 "update eric.t3 set c2 = 5 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ >

The Setup Procedures: Steps to Follow

[132]

 3 4 T x'00000000000001BBFA88'>

 4 4 T x'00000000000001BBF9DC'>

 2 5 H x'00000000000001BBFCF3'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BBFAFC' U 2006-06-12-
05.01.40.000001

x'00000000000001BBFA62' I 2006-06-12-
05.00.30.000001

x'00000000000001BBFD67' U 2006-06-12-
05.03.44.000001

We can see that we have three rows in our target table. The last row shows
our second UPDATE command.

9.	 Delete a row from ERIC.T3. From CLP-A, issue:
$ db2 "delete from eric.t3 where c1 = 2"

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t3"

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 4 T x'00000000000001BBFA88'

 4 4 T x'00000000000001BBF9DC'>

 2 5 H x'00000000000001BBFD8D'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BBFAFC' U 2006-06-12-
05.01.40.000001

x'00000000000001BBFA62' I 2006-06-12-
05.00.30.000001

x'00000000000001BBFE12' D 2006-06-12-
05.04.59.000001

We can see that we still have three rows in our target table. We can see our
delete operation.
We have now finished testing the CCD replication specifying COMPLETE=N
and CONDENSED=Y.

Appendix

[133]

T4—Q Sub for COMPLETE=N and CONDENSED=N
We will use a source and target table called ERIC.T4.

Create a Q subscription called TAB4 using the ASNCLP
SYSA_crt_qsub_ccd_t4.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB4 ERIC.T4
OPTIONS
HAS LOAD PHASE N
TARGET NAME ERIC.T4
TYPE CCD
CONDENSED OFF
COMPLETE OFF
KEYS(C1)
CONFLICT ACTION F
LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_ccd_t4.asnclp

$ db2 "select substr(subname,1,10) as subname, before_values, changed_
cols_only from asn.ibmqrep_subs "

SUBNAME BEFORE_VALUES CHANGED_COLS_ONLY

---------- ------------- -----------------

TAB1 Y N

TAB2 Y N

TAB3 Y N

TAB4 Y N

We should see for TAB4 a BEFORE_VALUES value of Y and a CHANGED_COLS_ONLY
value of N.

The Setup Procedures: Steps to Follow

[134]

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, conflict_rule as CR,
conflict_action as CA, ccd_condensed as CON, CCD_COMPLETE as COM from
asn.ibmqrep_targets "

SUBNAME CR CA CON COM

---------- -- -- --- ---

TAB1 K F Y Y

TAB2 K F N Y

TAB3 K F Y N

TAB4 K F N N

For a subname of TAB4 check that the CON column (condensed) is N and the COM
column (complete) is N.

From CLP-B, issue:

$ db2 "select substr(subname,1,10) as subname, is_key, substr(source_
colname,1,20) as source_column from asn.ibmqrep_trg_cols where subname =
'TAB4'"

SUBNAME IS_KEY SOURCE_COLUMN

---------- ------ --------------------

TAB4 Y C1

TAB4 Y C2

TAB4 Y C3

TAB4 N IBMSNAP_COMMITSEQ

TAB4 N IBMSNAP_INTENTSEQ

TAB4 N IBMSNAP_LOGMARKER

TAB4 N IBMSNAP_OPERATION

Test CCD replication for COMPLETE=N and CONDENSED=N.

We will initially have ERIC.T4 populated by two rows and then insert a row, update
a row, and delete a row.

1.	 Initially populate ERIC.T4. From CLP-A, issue:
$ db2 "insert into eric.t4 values (1,1,'J') "

$ db2 "insert into eric.t4 values (2,2,'H') "

2.	 Issue a CAPSTART command. Use the ASNCLP SYSA_qsub_start_t4.asnclp
file:
ASNCLP SESSION SET TO Q REPLICATION;

Appendix

[135]

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

START QSUB SUBNAME TAB4;

From CLP-A, issue:
$ asnclp -f SYSA_qsub_start_t4.asnclp

3.	 Check that the Q subscription is active. From CLP-A, issue:
$ db2 "select substr(subname,1,10) as subname, state from asn.
ibmqrep_subs "

SUBNAME STATE

---------- -----

TAB1 A

TAB2 A

TAB3 A

TAB4 A

We can see that our Q subscription for TAB4 has a STATE of A which
means active.

4.	 Check if an initial load has been performed. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION
IBMSNAP_LOGMARKER

----------- ----------- ---------- ---------------------------

---------------------------- ----------------- ---------------

We can see that, we have no records in our target table. An initial load has
NOT been performed.

5.	 Insert a row into ERIC.T4. From CLP-A, issue:
$ db2 "insert into eric.t4 values (3,3,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ >

The Setup Procedures: Steps to Follow

[136]

 3 3 T x'00000000000001BC1872'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BC18F8' I 2006-06-12-
05.17.20.000001

We can see that, we now have one row in the target table, which is our
inserted row.

6.	 Insert another row into ERIC.T4. From CLP-A, issue:
$ db2 "insert into eric.t4 values (4,4,'T') "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BC1872'>

 4 4 T x'00000000000001BC1BFB'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BC18F8' I 2006-06-12-
05.17.20.000001

x'00000000000001BC1C81' I 2006-06-12-
05.18.05.000001

We can see that, we now have two rows in the target table, which are our two
inserted rows.

7.	 Update a row in ERIC.T4. From CLP-A, issue:
$ db2 "update eric.t4 set c2 = 4 where c1 = 2 "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BC1872'>

 4 4 T x'00000000000001BC1BFB'>

 2 4 H x'00000000000001BC1CA7'

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BC18F8' I 2006-06-12-
05.17.20.000001

x'00000000000001BC1C81' I 2006-06-12-
05.18.05.000001

Appendix

[137]

x'00000000000001BC1D1B' U 2006-06-12-
05.19.08.000001

We can see that, we now have three rows in our target table. The third row is
our updated row.

8.	 Update the same row in ERIC.T4. From CLP-A, issue:
$ db2 "update eric.t4 set c2 = 5 where c1 = 2 "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BC1872'>

 4 4 T x'00000000000001BC1BFB'>

 2 4 H x'00000000000001BC1CA7'>

 2 5 H x'00000000000001BC1D41'>

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BC18F8' I 2006-06-12-
05.17.20.000001

x'00000000000001BC1C81' I 2006-06-12-
05.18.05.000001

x'00000000000001BC1D1B' U 2006-06-12-
05.19.08.000001

x'00000000000001BC1DB5' U 2006-06-12-
05.20.40.000001

We can see that, we now have four rows in our target table. The fourth row is
our second update command.

9.	 Delete a row from ERIC.T4. From CLP-A, issue:
$ db2 "delete from eric.t4 where c1 = 2 "

Check the result on session B. From CLP-B, issue:
$ db2 "select * from eric.t4 "

C1 C2 C3 IBMSNAP_INTENTSEQ >

 3 3 T x'00000000000001BC1872'>

 4 4 T x'00000000000001BC1BFB'>

 2 4 H x'00000000000001BC1CA7'>

 2 5 H x'00000000000001BC1D41'>

 2 5 H x'00000000000001BC1DDB'>

The Setup Procedures: Steps to Follow

[138]

IBMSNAP_COMMITSEQ IBMSNAP_OPERATION IBMSNAP_LOGMARKER

x'00000000000001BC18F8' I 2006-06-12-
05.17.20.000001

x'00000000000001BC1C81' I 2006-06-12-
05.18.05.000001

x'00000000000001BC1D1B' U 2006-06-12-
05.19.08.000001

x'00000000000001BC1DB5' U 2006-06-12-
05.20.40.000001

x'00000000000001BC1E60' D 2006-06-12-
05.21.56.000001

We now have five rows in our target table. We can see the delete operation.
We have now finished testing the CCD replication specifying COMPLETE=N
and CONDENSED=N.

Summary of CCD table options
The following table shows the order of the seven operations in the tests— two
operations before and five operations after the start of Q Capture and Q Apply:

Insert row 1 db2 insert into <table> values (1,1,'J')
Insert row 2 db2 insert into <table> values (2,2,'H')
Start Q Capture and Q Apply
Insert row 3 db2 insert into <table> values (3,3,'T')
Insert row 4 db2 insert into <table> values (4,4,'T')
Update row 2 db2 update <table> set c2 = 4 where c1 = 2
Update row 2 db2 update <table> set c2 = 5 where c1 = 2
Delete row 2 db2 delete from <table> where c1 = 2

Appendix

[139]

The following diagram summarizes the results from the previous tests. The order of
operations was shown in the previous table:

The definitions of COMPLETE and CONDENSED were covered in the The different types
of Q replication—Replicating to a Consistent Change Data table section of Chapter 1, Q
Replication Overview.

The Setup Procedures: Steps to Follow

[140]

Unidirectional replication to two targets
(U-tree)
In this section, we look at setting up unidirectional replication from one source to
many targets. Say we want to go from one source database (DB2A) on SY1 to two
target databases (DB2B and DB2C) on SY2 and SY3 respectively.

The test table ERIC.T1 only exists on DB2A—Q Apply will create the test table
FRED.T1 on the other databases. SY1 will have one Q Capture with two Send Queues,
and there is a Q Apply on SY2 and on SY3.

The database layer
We need to create three databases—a source database called DB2A and two target
databases called DB2B and DB2C—follow the instructions in the First steps—Database
creation section.

We now have defined the database layer and can proceed to the
WebSphere MQ layer.

Appendix

[141]

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start three Queue Managers called QMA, QMB, and QMC—follow
the instructions in the First steps—Queue Manager processing section.

The following shows the queues we need for unidirectional replication to two
targets. We need unidirectional queues between QMA/QMB and QMA/QMC. In the
following scripts, we define some queues twice, but that will not cause a problem as
the second definition request will just say that the queue already exists.

The queues we need to go from QMA to QMB are in SYSA_QMA_MQDEFS_UNI_AB.TXT
file. From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_UNI_AB.TXT

The queues we need to go from QMA to QMC are in SYSA_QMA_MQDEFS_UNI_AC.TXT file:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

DEFINE QLOCAL(CAPC.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPA FROM CAPC') +

PUT(ENABLED) +

The Setup Procedures: Steps to Follow

[142]

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPA CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMA') +

PUT(ENABLED) +

GET(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

Appendix

[143]

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPA TO APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPA.TO.APPC.RECVQ) +

RQMNAME(QMC) +

DEFPSIST(YES) *

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')

*

From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_UNI_AC.TXT

The queues we need to go from QMB to QMA are in SYSB_QMB_MQDEFS_UNI_BA.TXT file.

From CLP-B, run the file as:

$ runmqsc QMB < SYSB_QMB_MQDEFS_UNI_BA.TXT

The queues we need to go from QMC to QMA are in SYSB_QMB_MQDEFS_UNI_CA.TXT file:

DELETE QLOCAL(CAPC.ADMINQ) PURGE

DEFINE QLOCAL(CAPC.ADMINQ) +

REPLACE +

DESCR('LOCAL DEFN OF ADMINQ FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFINE QLOCAL(CAPA.TO.APPC.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE -
APPC FROM CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

The Setup Procedures: Steps to Follow

[144]

DEFSOPT(SHARED) +

DEFPSIST(YES)

DELETE QLOCAL(CAPC.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPC.RESTARTQ) +

REPLACE +

DESCR('LOCAL DEFN OF RESTART FOR
CAPC CAPTURE') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMC) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF ADMINQ FOR
CAPA CAPTURE') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

Appendix

[145]

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPC.TO.APPA.
SENDQ.REMOTE) +

REPLACE +

DESCR('REMOTE DEFN OF SEND QUEUE
FROM CAPC TO APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPC.TO.APPA.RECVQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

From CLP-B, run the file as:

$ runmqsc QMC < SYSC_QMC_MQDEFS_UNI_CA.TXT

Starting the Listeners
Start the Listeners on QMA, QMB, and QMC as described in the P2P three-way
replication—The WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
We need to start the Channels between QMA/QMB and between QMA/QMC.

Start the Channels between QMA and QMB as described in the P2P three-way
replication—The WebSphere MQ layer—Starting the Channels section.

Start the Channels between QMA and QMC as described in the P2P three-way
replication—The WebSphere MQ layer—Starting the Channels section.

Note that we do NOT start the Channels between QMB and QMC.

The Setup Procedures: Steps to Follow

[146]

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

We will start by putting test messages onto each system using the amqsput command
and then retrieving them using the amqsget command.

We need to perform two unidirectional tests—between QMA and QMB, and between
QMA and QMC.

To test unidirectional messages between QMA and QMB—follow the instructions in the
Unidirectional replication—The WebSphere MQ layer—Testing the WebSphere MQ layer
section.

The put message batch file for QMA to QMC is SYSA_QMA_TESTP_UNI_AC.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPC.
SENDQ.REMOTE QMA < SYSA_QMA_TEST1.TXT

From CLP-A, run the file as:

$ SYSA_QMA_TESTP_UNI_AC.BAT

The put message batch file for QMC to QMA is SYSC_QMC_TESTP_UNI_CA.BAT:

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMC < SYSB_QMB_TEST2.TXT

Note that we are using SYSB_QMB_TEST2.TXT as the input text file, but that is valid—
it only contains the word test2.

From CLP-C, run the file as:

$ SYSC_QMC_TESTP_UNI_CA.BAT

The get message file (SYSC_QMC_TESTG_UNI_AC.BAT) for QMC from QMA is:

echo The amqsget program take 15 seconds to run
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPC.
RECVQ QMC

@ECHO You should see above: test1

From CLP-C, run the file as:

$ SYSC_QMC_TESTG_UNI_AC.BAT

The get message file (SYSA_QMA_TESTG_UNI_CA.BAT) for QMA from QMC is:

echo The amqsget program take 15 seconds to run
call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ QMA
@ECHO You should see above: test2

Appendix

[147]

From CLP-A, run the file as:

$ SYSA_QMA_TESTG_UNI_CA.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating the Q Apply tables on DB2C
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2A to DB2C
•	 Creating the two Q subscriptions

Creating Q Capture control tables on DB2A
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Capture control tables on DB2A section.

Creating Q Apply control tables on DB2B
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Apply control tables on DB2B section.

Creating Q Apply control tables on DB2C
Follow the instructions in the Unidirectional replication—The Q replication layer—Creating
Q Apply control tables on DB2B section.

Creating a Replication Queue Map from
DB2A to DB2B
Follow the instructions in the Bidirectional replication—The Q replication layer—Creating a
Replication Queue Map for DB2A to DB2B section.

The Setup Procedures: Steps to Follow

[148]

Creating a Replication Queue Map from
DB2A to DB2C
Follow the instructions in the P2P three-way replication—The Q replication layer—Creating
a Replication Queue Map for DB2A to DB2C section.

Creating a Q subscription(s)
We need to create two unidirectional Q subscriptions—one from A to B and
one A to C.

For the Q subscription from A to B, refer to the Unidirectional replication—The Q
replication layer—Creating a Q subscription section.

The file to create a unidirectional Q subscription from A to C is called
SYSA_crt_qsub_uni_AC.asnclp:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2C;

SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMC FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2C
(SUBNAME TAB1 ERIC.T1
OPTIONS
HAS LOAD PHASE I
SPILL_MODELQ "IBMQREP.SPILL.MODELQ"
TARGET NAME FRED.T1
TYPE USERTABLE
KEYS (C1)
CONFLICT ACTION F
LOAD TYPE 0);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_uni_AC.asnclp

Appendix

[149]

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A
To start Q Capture on DB2A, follow the instructions in the Unidirectional replication—
Starting Q Capture and Q Apply—Starting Q Capture on DB2A section.

Starting Q Apply on DB2B and DB2C
To start Q Apply on DB2B, follow the instructions in the Unidirectional replication—
Starting Q Capture and Q Apply—Starting Q Apply on DB2B section.

From CLP-C, issue:

$ start asnqapp APPLY_SERVER=db2c

Testing replication
We are now in a position to test the unidirectional replication from one source to two
targets. Insert a record into ERIC.T1 on DB2A and check that it is replicated to
FRED.T1 on DB2B and DB2C.

From CLP-A, issue:

$ db2 "insert into eric.t1 values (1,1,'H') "

From CLP-B, issue:

$ "db2 select * from fred.t1 "

C1 C2 C3

----------- ----------- ----------

 1 1 H

 1 record(s) selected.

We should see one record in FRED.T1 on DB2B.

From CLP-C, issue:

$ db2 "select * from fred.t1 "

C1 C2 C3

----------- ----------- ----------

 1 1 H

 1 record(s) selected.

The Setup Procedures: Steps to Follow

[150]

We should see one record in FRED.T1 on DB2C.

We can see that the unidirectional Q replication setup from one source to two
targets is working.

Bidirectional replication to two targets
(B-tree)
The following shows the setup that we will use:

The B-tree structure was discussed in the The different types of Q replication—Tree
replication section of Chapter 1.

The test table ERIC.T1 only exists on DB2A—Q Apply will create the test table
FRED.T1 on the other databases.

Appendix

[151]

The database layer
We need to create three source databases called DB2A, DB2B, and DB2C—follow the
instructions in the First steps—Database creation section.

We now have the database layer defined and can now proceed to the
WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start three Queue Managers called QMA, QMB, and QMC—follow
the instructions in the First steps—Queue Manager processing section.

The following diagram shows the queues needed for bidirectional replication to two
targets. What we are doing here is effectively setting up bidirectional replication
between DB2A and DB2B on the one hand, and DB2A and DB2C on the other. How the
queues are related is shown in the following diagram:

The Setup Procedures: Steps to Follow

[152]

The values for the Send, Receive, and Administration Queues for each RQM are
shown in the following

RQMA2B RQMB2A
SENDQ CAPA.TO.APPB.RECVQ.REMOTE

on QMA
CAPB.TO.APPA.RECVQ.REMOTE on
QMB

RECVQ CAPA.TO.APPB.RECVQ on QMB CAPB.TO.APPA.RECVQ on QMA
ADMINQ CAPA.ADMINQ.REMOTE on QMB CAPB.ADMINQ.REMOTE on QMA

RQMA2C RQMC2A
SENDQ CAPA.TO.APPC.RECVQ.REMOTE

on QMA
CAPC.TO.APPA.RECVQ.REMOTE on
QMC

RECVQ CAPA.TO.APPC.RECVQ on QMC CAPC.TO.APPA.RECVQ on QMA
ADMINQ CAPA.ADMINQ.REMOTE on QMC CAPC.ADMINQ.REMOTE on QMA

To set up the bidirectional queues for QMA and QMB, refer to the Bidirectional
replication—The WebSphere MQ layer—Creating the Queue Managers and queues section.

The queues we need for replication between DB2A and DB2C to be run against QMA are
in SYSA_QMA_MQDEFS_BIP2P2W_AC.TXT file:

DELETE QLOCAL(CAPA.ADMINQ) PURGE

DEFINE QLOCAL(CAPA.ADMINQ) +

REPLACE +

DESCR('LOCAL DEF OF ADMINQ FOR
CAPA') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DELETE QLOCAL(CAPA.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPA.RESTARTQ) +

REPLACE +

DESCR('LOC DEF OF RESTART FOR
CAPA') +

DEFPSIST(YES)

DEFINE QLOCAL(CAPC.TO.APPA.
RECVQ) +

REPLACE +

DESCR('LOCAL RECV Q -APPA FROM
CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPC.ADMINQ.
REMOTE) +

REPLACE +

DESCR('RMT DEF OF ADMINQ FOR
CAPC') +

PUT(ENABLED) +

Appendix

[153]

+

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

*

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMA) +

REPLACE +

DESCR('LOCAL DEAD LETTER QUEUE
QMA') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

*

DEFINE QREMOTE(CAPA.TO.APPC.
SENDQ.REMOTE) +

REPLACE +

XMITQ(QMC.XMITQ) +

RNAME(CAPC.ADMINQ) +

RQMNAME(QMC) +

DEFPSIST(YES)

*

DEFINE QLOCAL(QMC.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMC') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMA.TO.QMC) +

INITQ(SYSTEM.CHANNEL.INITQ)

*

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMC') +

XMITQ(QMC.XMITQ) +

CONNAME('127.0.0.1(1452)')

*

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(RCVR) +

The Setup Procedures: Steps to Follow

[154]

DESCR('RMT DEF SND Q CAPA TO
APPC') +

PUT(ENABLED) +

XMITQ(QMC.XMITQ) +

RNAME(CAPA.TO.APPC.RECVQ) +

RQMNAME(QMC) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMC')

*

From CLP-A, run the file as:

$ runmqsc QMA < SYSA_QMA_MQDEFS_BIP2P2W_AC.TXT

The queues we need for replication between DB2C and DB2A to be run against QMC are
in SYSC_QMC_MQDEFS_BIP2P2W_CA.TXT file:

DELETE QLOCAL(CAPC.ADMINQ) PURGE

DEFINE QLOCAL(CAPC.ADMINQ) +

REPLACE +

DESCR('LOC DEF OF ADMINQ FOR
CAPC') +

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DELETE QLOCAL(CAPC.RESTARTQ)
PURGE

DEFINE QLOCAL(CAPC.RESTARTQ) +

REPLACE +

DESCR('LOC DEF OF RESTART CAPC')
+

PUT(ENABLED) +

GET(ENABLED) +

DEFPSIST(YES)

DEFINE QLOCAL(CAPA.TO.APPC.
RECVQ) +

REPLACE +

DESCR('LOCAL RECEIVE QUEUE') +

PUT(ENABLED) +

GET(ENABLED) +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPA.ADMINQ.
REMOTE) +

REPLACE +

DESCR('RMT DEF OF ADMINQ FOR
CAPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

Appendix

[155]

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QMODEL(IBMQREP.SPILL.
MODELQ) +

REPLACE +

DEFSOPT(SHARED) +

MAXDEPTH(500000) +

MSGDLVSQ(FIFO) +

DEFTYPE(PERMDYN)

DEFINE QLOCAL(DEAD.LETTER.QUEUE.
QMC)+

REPLACE +

DESCR('LOCAL DEAD LETTER Q QMC')
+

PUT(ENABLED) +

GET(ENABLED) +

SHARE +

DEFSOPT(SHARED) +

DEFPSIST(YES)

DEFINE QREMOTE(CAPC.TO.APPA.
SENDQ.REMOTE)+

REPLACE +

DESCR('RMT DEF SND Q CAPC TO
APPA') +

PUT(ENABLED) +

XMITQ(QMA.XMITQ) +

RNAME(CAPC.TO.APPA.RECVQ) +

RQMNAME(QMA) +

RNAME(CAPA.ADMINQ) +

RQMNAME(QMA) +

DEFPSIST(YES)

DEFINE QLOCAL(QMA.XMITQ) +

REPLACE +

DESCR('TRANSMISSION QUEUE TO
QMA') +

USAGE(XMITQ) +

PUT(ENABLED) +

GET(ENABLED) +

TRIGGER +

TRIGTYPE(FIRST) +

TRIGDATA(QMC.TO.QMA) +

INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QMC.TO.QMA) +

CHLTYPE(SDR) +

REPLACE +

TRPTYPE(TCP) +

DISCINT(0) +

DESCR('SENDER CHANNEL TO QMA') +

XMITQ(QMA.XMITQ) +

CONNAME('127.0.0.1(1450)')

DEFINE CHANNEL(QMA.TO.QMC) +

CHLTYPE(RCVR) +

REPLACE +

TRPTYPE(TCP) +

DESCR('RECEIVER CHANNEL FROM
QMA')

The Setup Procedures: Steps to Follow

[156]

From CLP-C, run the file as:

$ runmqsc QMC < SYSC_QMC_MQDEFS_BIP2P2W_CA.TXT

Starting the Listeners
The following diagram shows the related Listeners and Channels:

Start the Listeners for QMA, QMB, and QMC as described in the P2P three-way
replication—The WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
For the Channels between QMA and QMB—follow the instructions in the Unidirectional
replication—Starting the Channels section.

For the Channels between QMA and QMC—follow the instructions in the P2P three-way
replication—The WebSphere MQ layer—Starting the Channels section.

Appendix

[157]

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

To test bidirectional message replication between QMA and QMB—follow the instructions
in the Bidirectional replication—The WebSphere MQ layer—Testing the WebSphere MQ
layer section.

To test bidirectional message replication between QMA and QMC—follow
the instructions.

The put message batch file for QMA is called SYSA_QMA_TESTP_BIP2P2W_AC.BAT:

echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.TO.APPC.
SENDQ.REMOTE QMA <QMA_TEST1.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.ADMINQ.
REMOTE QMA <QMA_TEST2.TXT

From CLP-A, run the file as:

$ SYSA_QMA_TESTP_BIP2P2W_AC.BAT

The put message batch file for QMC is called SYSC_QMC_TESTP_BIP2P2W_CA.BAT:

echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPC.TO.APPA.
SENDQ.REMOTE QMC <SYSC_QMC_TEST9.TXT

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsput" CAPA.ADMINQ.
REMOTE QMC <SYSC_QMC_TEST10.TXT

From CLP-C, run the file as:

$ SYSC_QMC_TESTP_BIP2P2W_CA.BAT

Once we have put the test messages onto each system, we can retrieve them.

The get message batch file for QMA from QMC is SYSA_QMA_TESTG_BIP2P2W_AC.BAT:

@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.ADMINQ QMA

@ECHO You should see above: test10

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.TO.APPA.
RECVQ QMA

@ECHO You should see above: test9

The Setup Procedures: Steps to Follow

[158]

From CLP-A, run the file as:

$ SYSA_QMA_TESTG_BIP2P2W_AC.BAT

The get message batch file for QMC from QMA is SYSC_QMC_TESTG_BIP2P2W_CA.BAT:

@echo The amqsget program take 15 seconds to run

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPA.TO.APPC.
RECVQ QMC

@ECHO You should see above: test1

call "C:\Program Files\IBM\WebSphere MQ\bin\amqsget" CAPC.ADMINQ QMC

@ECHO You should see above: test2

From CLP-C, run the file as:

$ SYSC_QMC_TESTG_BIP2P2W_CA.BAT

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture and Q Apply control tables on DB2A
•	 Creating the Q Capture and Q Apply control tables on DB2B
•	 Creating the Q Capture and Q Apply control tables on DB2C
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Replication Queue Map for DB2A to DB2C
•	 Creating a Replication Queue Map for DB2B to DB2A
•	 Creating a Replication Queue Map for DB2C to DB2A
•	 Creating a Q subscription

Creating Q Capture/Q Apply control tables on DB2A
Follow the instruction in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2A section.

Appendix

[159]

Creating Q Capture/Q Apply control tables on DB2B
Follow the instruction in the Bidirectional replication—The Q replication layer—Creating
Q Capture/Q Apply control tables on DB2B section.

Creating Q Capture/Q Apply control tables on DB2C
Follow the instruction in the P2P three-way replication—The Q replication layer—
Creating Q Capture/Q Apply control tables on DB2C section.

Creating a Replication Queue Map for
DB2A to DB2B
Follow the instruction in the Bidirectional replication—The Q replication layer—Creating
a Replication Queue Map for DB2A to DB2B section.

Creating a Replication Queue Map for
DB2A to DB2C
Follow the instruction in the P2P three-way replication—The Q replication layer—
Creating a Replication Queue Map for DB2A to DB2C section.

Creating a Replication Queue Map for
DB2B to DB2A
Follow the instruction in the P2P three-way replication—The Q replication layer—
Creating a Replication Queue Map for DB2B to DB2A section.

Creating a Replication Queue Map for
DB2C to DB2A
Follow the instruction in the P2P three-way replication—The Q replication layer—
Creating a Replication Queue Map for DB2C to DB2A section.

Creating the Q subscriptions
To create a bidirectional Q subscription between DB2A and DB2B, follow the
instructions in the Bidirectional replication—The Q replication layer—Creating a
bidirectional Q subscription section .

The Setup Procedures: Steps to Follow

[160]

The two files needed for the bidirectional Q subscription between
DB2A and DB2C are SYSA_loadbidi_AC.asnclp and
SYSA_contbidi_AC.txt. SYSA_loadbidi_AC.asnclp file contains:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;
LOAD MULTIDIR REPL SCRIPT "SYSA_contbidi_AC.txt";

File SYSA_contbidi_AC.txt contains:

set subgroup "TABT1AC";

set server multidir to db "DB2A";
set server multidir to db "DB2C";
set multidir schema "DB2A".ASN;
set multidir schema "DB2C".ASN;

set connection SOURCE "DB2A".ASN TARGET "DB2C".ASN replqmap "RQMA2C";
set connection SOURCE "DB2C".ASN TARGET "DB2A".ASN replqmap "RQMC2A";
set tables("DB2A".ASN.ERIC.T1, "DB2C".ASN.FRED.T1);
CREATE QSUB subtype b;

From CLP-A:

$ asnclp -f SYSA_loadbidi_AC.asnclp

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A, DB2B, and DB2C
To start Q Capture, follow the instructions in the Q Capture administration—Starting Q
Capture section of Chapter 6, Administration Tasks.

Wait for all Q Captures to be up and running before starting the Q Applys.

Starting Q Apply on DB2A, DB2B, and DB2C
To start Q Apply, follow the instructions in the Q Apply administration—Starting Q
Apply section of Chapter 6.

Issuing a CAPSTART command
Follow the instructions in the P2P three-way—Starting Q Capture and Q Apply—Issuing
a CAPSTART command section.

Appendix

[161]

Testing replication
We are now in a position to test our bidirectional replication to two targets setup. We
will insert a record on DB2A and check that it has replicated to DB2B and DB2C.

From CLP-A, issue:

$ db2 "insert into eric.t1 values (1,1,'H') "

$ db2 "select * from eric.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H

From CLP-C, issue:

$ db2 "select * from fred.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H

From CLP-B, issue:

$ db2 "select * from fred.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H

$ db2 "insert into fred.t1 values (2,2,'H') "

From CLP-A, issue:

$ db2 "select * from eric.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H
 2 2 H

From CLP-C, issue:

$ db2 "select * from fred.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H
 2 2 H

$ db2 "insert into fred.t1 values (3,3,'H') "

The Setup Procedures: Steps to Follow

[162]

From CLP-A, issue:

$ db2 "select * from eric.t1 "

C1 C2 C3

----------- ----------- ----------

 1 1 H

 2 2 H

 3 3 H

From CLP-B, issue:

$ db2 "select * from fred.t1 "

C1 C2 C3
----------- ----------- ----------
 1 1 H
 2 2 H
 3 3 H

We can see that the bidirectional B-tree structure Q replication setup from one source
to two targets is working.

Unidirectional replication for an XML
data type
The following diagram shows the setup we will use:

We will start with a test table DB2ADMIN.CUSTOMER, which only exists on DB2A—Q
Apply will create its equivalent called FRED.CUSTOMER on DB2B.

Appendix

[163]

There are a few restrictions concerning replicating the XML data type:

•	 We cannot filter rows based on the contents of an XML document.
•	 The documents are not validated by Q Apply.
•	 We cannot replicate the XML schema registrations.
•	 We cannot replicate XML columns from Oracle sources.
•	 User-defined unique indexes on XPATH expressions on XML columns are

not supported. If a unique index exists, then when we try and create the Q
subscription, we will get ASN0999E Q Replication does not support
the XML column DB2ADMIN.CUSTOMER.INFO because it has one or
more unique indexes." : "" : Error condition "", error code(s):
"", "", ""." message. To replicate these columns, drop the
unique index and use a non-unique index.

The database layer
We need to create a source database called DB2A and a target database called
DB2B—because we are going to use the XML sample database as the source, we will
not follow the instructions in the First steps—Database creation section, but use the
following commands.

From CLP-A, issue:

$ db2sampl –name db2a -xml

$ db2 UPDATE DB CFG FOR db2a USING logarchmeth1 disk:c:\temp

$ db2 BACKUP DB db2a TO c:\temp

Now we can check if we have any indexes on the XML data type column using the
following SQL:

$ db2 "select substr(indschema,1,10) as indschema, substr(indname,1,20)
as indname,substr(colnames,1,20) as colnames from syscat.indexes where
tabname = 'CUSTOMER'"

And we can drop the indexes as follows:

$ db2 DROP INDEX db2admin.cust_cid_xmlidx

$ db2 drop index DB2ADMIN.cust_name_xmlidx

From CLP-B, issue:

$ db2 CREATE DB db2b

We have now completed the database layer and can proceed to the
WebSphere MQ layer.

The Setup Procedures: Steps to Follow

[164]

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create two Queue Managers called QMA and QMB—follow the instructions in
the Create/start/stop a Queue Manager section of Chapter 4, WebSphere MQ for the DBA.

Create the queues as described in the Unidirectional replication—The WebSphere MQ
layer—Creating the Queue Managers and queues section.

Starting the Listeners
Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

Test the WebSphere layer as described in the Unidirectional replication—The WebSphere
MQ layer—Testing the WebSphere MQ layer section.

Provided we see the messages that we are told we should see, then we have
successfully tested the WebSphere MQ layer.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Q subscription

Appendix

[165]

Creating Q Capture control tables on DB2A
Create the Q Capture control tables as described in the Unidirectional replication—The
Q replication layer—Creating Q Capture control tables on DB2A section.

Creating Q Apply control tables on DB2B
Create the Q Apply control tables as described in the Unidirectional replication—The Q
replication layer—Create Q Apply control tables on DB2B section.

Creating a Replication Queue Map from DB2A to
DB2B
Create a Replication Queue Map as described in the Unidirectional replication—The Q
replication layer—Creating a Replication Queue Map from DB2A to DB2B section.

Creating a Q subscription
The ASNCLP command file to create a unidirectional Q subscription is called
SYSA_crt_qsub_uni_AB.asnclp and is described in the Q subscription
maintenance—Q subscription for unidirectional replication section of Chapter 5, The
ASNCLP Command Interface.

For this test change the source and target tables to be CUSTOMER. Therefore edit the
SYSA_crt_qsub_uni_AB.asnclp file, make the change to the source and target table
names, and save the file as SYSA_crt_qsub_uni_AB_XML.asnclp:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A;
SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB
USING REPLQMAP RQMA2B
(SUBNAME TAB1 DB2ADMIN.CUSTOMER
OPTIONS
HAS LOAD PHASE I
SPILL_MODELQ "IBMQREP.SPILL.MODELQ"
TARGET NAME FRED.CUSTOMER
TYPE USERTABLE

The Setup Procedures: Steps to Follow

[166]

KEYS (CID)

CONFLICT ACTION F

LOAD TYPE 2);

From CLP-A, issue:

$ asnclp -f SYSA_crt_qsub_uni_AB_XML.asnclp

Starting Q Capture and Q Apply
Now we need to start Q Capture and Q Apply.

Starting Q Capture on DB2A
Start Q Capture as described in the Unidirectional replication—Starting Q Capture and
Q Apply—Starting Q Capture on DB2A section.

Starting Q Apply on DB2B
Start Q Apply as described in the Unidirectional replication—Starting Q Capture and Q
Apply—Starting Q Apply on DB2B section.

Testing replication
There are many tests that we could perform, following are just a couple.

The first test we will perform is to add an element to a particular record in the
DB2ADMIN.CUSTOMER table on DB2A and check that it is replicated to FRED.CUSTOMER
on DB2B. We will use the following SQL (trans04_xml.sql):

From CLP-A, issue:

$ db2 "select info from db2admin.customer where cid=1003 "

<customerinfo xmlns="http://posample.org" Cid="1003"><name>Robert
Shoemaker</name><addr country="Canada"><street>1596 Baseline</
street><city>Aurora</city><prov-state>Ontario</prov-state><pcode-
zip>N8X 7F8</pcode-zip></addr><phone type="work">905-555-7258</
phone><phone type="home">416-555-2937</phone><phone
type="cell">905-555-8743</phone><phone type="cottage">613-555-3278</
phone></customerinfo>

The SQL statement to add an element is an UPDATE statement as shown next:

UPDATE
db2admin.customer
SET info = (select xmlquery('declare default element namespace
"http://posample.org";
transform

Appendix

[167]

copy $newinfo := $info
modify do insert <status>Current</status> as last into $newinfo/
customerinfo
return $newinfo' passing info as "info")
FROM customer WHERE customer.cid = 1003)
WHERE cid = 1003 #

$ db2 -td# -vf trans04_xml.sql

$ db2 "select info from db2admin.customer where cid=1003"

<customerinfo xmlns="http://posample.org" Cid="1003"><name>Robert
Shoemaker</name><addr country="Canada"><street>1596 Baseline</
street><city>Aurora</city><prov-state>Ontario</prov-state><pcode-
zip>N8X 7F8</pcode-zip></addr><phone type="work">905-555-7258</
phone><phone type="home">416-555-2937</phone><phone
type="cell">905-555-8743</phone><phone type="cottage">613-555-3278</
phone><status>Current</status></customerinfo>

We can see that the XML record has been altered on DB2A.

Now let's check that the change has been replicated to DB2B.

From CLP-B, issue:

$ db2 "select info from fred.customer where cid=1003"

<customerinfo xmlns="http://posample.org" Cid="1003"><name>Robert
Shoemaker</name><addr country="Canada"><street>1596 Baseline</
street><city>Aurora</city><prov-state>Ontario</prov-state><pcode-
zip>N8X 7F8</pcode-zip></addr><phone type="work">905-555-7258</
phone><phone type="home">416-555-2937</phone><phone
type="cell">905-555-8743</phone><phone type="cottage">613-555-3278</
phone><status>Current</status></customerinfo>

We can see that the alteration to the XML record has been replicated to FRED.
CUSTOMER on DB2B.

For a second test, we will update an element in an XML column for a
particular Cid value.

Let's remind ourselves of the structure of the INFO column:

<customerinfo xmlns="http://posample.org" Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>

The Setup Procedures: Steps to Follow

[168]

 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
 </customerinfo>

Say we want to update the phone number of Cid 1003, but which one? Let's update
the phone number for work only. The UPDATE statement will look like this (update_
xml01.sql):

update db2admin.customer
set info = xmlquery('declare default element namespace "http://
posample.org";
transform
copy $new := $INFO
modify do replace value of $new/customerinfo/phone[@type = "work"]
with "123-456-7890"
return $new')
where cid = 1003#

And we run the SQL as follows.

From CLP-A, issue:
$ db2 -td# -vf update_xml01.sql

Let's check that the update has worked:
$ db2 "select info from db2admin.customer where cid=1003"

1003 <customerinfo xmlns="http://posample.org" Cid="1003"><name>Robert
Shoemaker</name><addr country="Canada"><street>1596 Baseline</
street><city>Aurora</city><prov-state>Ontario</prov-state><pcode-
zip>N8X 7F8</pcode-zip></addr><phone type="work">123-456-7890</
phone><phone type="home">416-555-2937</phone><phone
type="cell">905-555-8743</phone><phone type="cottage">613-555-3278</
phone><status>Current</status></customerinfo>

We can see that the update has worked on DB2A. Now let's check that the replication
has worked on DB2B.

From CLP-B, issue:
$ db2 "select info from fred.customer where cid = 1003"

1003 <customerinfo xmlns="http://posample.org" Cid="1003"><name>Robert
Shoemaker</name><addr country="Canada"><street>1596 Baseline</
street><city>Aurora</city><prov-state>Ontario</prov-state><pcode-
zip>N8X 7F8</pcode-zip></addr><phone type="work">123-456-7890</
phone><phone type="home">416-555-2937</phone><phone
type="cell">905-555-8743</phone><phone type="cottage">613-555-3278</
phone><status>Current</status></customerinfo>

Appendix

[169]

We can see that the UPDATE to the XML record has been replicated to FRED.CUSTOMER
on DB2B.

We can see that the replication of XML data in a unidirectional Q replication
setup is working.

Federated replication
In this section, we look at federated replication, in particular replicating from DB2
to Oracle and since DB2 9.7.1, replicating from Oracle to DB2. This is particularly
useful if you are using the DB2 9.7 Oracle compatibility feature, and want to keep
your Oracle and DB2 databases in step. The Oracle log mining feature was added
specifically for customers with this need.

Available sources/targets
To replicate to a federated target (non-DB2), we need to install the InfoSphere
Federation Server code and the target client database code on the server which will
run Q Apply, in addition to the replication code. In the following figure, we are
Replicating from a non-DB2 relational source (Oracle) to a non-DB2 relational target.

A table listing the restrictions that SQL Replication and Q replication have different
restrictions on the source and target can be found in the DB2 Information Center,
by searching for Comparison of sources and targets in SQL replication and Q replication:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.
swg.im.iis.db.repl.intro.doc/topics/iiyrcintdifst.html

The Setup Procedures: Steps to Follow

[170]

Replicating from DB2 to Oracle
The following diagram shows the setup we will use:

The Listening port for QMA is 1450 and for QMB is 1451.

The process of replicating to a non-DB2 database involves using a federated
nickname as a target inside DB2. The components that need to be set up to make this
work are as follows:

•	 Wrapper: A translation library specific to thServer: The specific database we
will be Replicating to.

•	 User Mapping: To match users and passwords on source and target.
•	 Nickname: This points to the target table and will be created automatically

by Q Apply.

The test tables ERIC.T5 only exist on DB2A—Q Apply will create the nickname on
DB2B and the target table on the Oracle system.

We are assuming that Oracle is installed.

The database layer
We need to create two databases, a source database DB2A and a target database
DB2B—follow the instructions in the First steps—Database creation section.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.swg.im.iis.db.repl.intro.doc/topics/iiyrcintdifst.html

Appendix

[171]

Once we have created the source database (DB2A), we need to create the source table
called ERIC.T5 as follows:

From CLP-A, issue:

$ db2 "create table ERIC.T5(C1 INT NOT NULL PRIMARY KEY, C2 int, C3
char(10)) "

What we need to do is set up the federation from DB2B to the Oracle database.

We will only define a wrapper and server for the Oracle target, we will NOT define
any nicknames manually—the nickname definition is done at the Q subscription
definition stage.

Our first task is to create the Oracle wrapper. The CREATE SERVER statement defines a
data source to our federated database (DB2B).

From CLP-B, issue:

$ db2 "CREATE WRAPPER NET8 LIBRARY 'db2net8.dll' "

Where NET8 is the Oracle client run time and db2net8.dll is the Windows dll
installed in \sqllib\bin to support the distributed transaction. On UNIX systems,
the dll is called libdb2net8.dll.

Next, we create a server definition:

$ db2 "CREATE SERVER ORA01 TYPE ORACLE VERSION '10g' WRAPPER NET8
OPTIONS(ADD NODE 'ORA01', COLLATING_SEQUENCE 'N') "

Next, we create a user mapping definition:

$ db2 "CREATE USER MAPPING FOR DB2ADMIN SERVER ORA01 OPTIONS (ADD
REMOTE_AUTHID 'system', ADD REMOTE_PASSWORD 'pworc') "

We have now completed the database layer and can now proceed to the
WebSphere MQ layer.

The WebSphere MQ layer
This section deals with the WebSphere MQ layer, which covers creating the Queue
Managers and the appropriate queues, and then starting the Listeners and Channels.

Creating the Queue Managers and Queues
We need to create and start two Queue Managers called QMA and QMB—follow the
instructions in the First steps—Queue Manager processing section.

The Setup Procedures: Steps to Follow

[172]

Create the queues as described in the Unidirectional replication—The WebSphere MQ
layer—Creating the Queue Managers and queues section.

Starting the Listeners
Start the Listeners for QMA and QMB as described in the Bidirectional replication—The
WebSphere MQ layer—Starting the Listeners section.

Starting the Channels
Start the Channels between QMA and QMB as described in the Bidirectional replication—
The WebSphere MQ layer—Starting the Channels section.

Testing the WebSphere MQ layer
Now that everything is started, we need to test the MQ layer.

Test the WebSphere layer as described in the Unidirectional replication—The WebSphere
MQ layer—Testing the WebSphere MQ layer section.

We have now defined the database and WebSphere MQ layers, and can proceed to
the Q replication layer.

The Q replication layer
The following sections give the ASNCLP commands to create the control tables, the
Replication Queue Maps, and the Q subscription. The tasks are:

•	 Creating the Q Capture tables on DB2A
•	 Creating the Q Apply tables on DB2B
•	 Creating a Replication Queue Map for DB2A to DB2B
•	 Creating a Q subscription
•	 Populating the source table

Creating Q Capture control tables on DB2A
Create the Q Capture control tables as described in the Unidirectional replication—The
Q replication layer—Creating Q Capture control tables on DB2A section.

Creating Q Apply control tables on DB2B
The ASNCLP commands to create the Q Apply control tables are in a file called
SYSB_db2b_crt_apply_oracle.asnclp:

Appendix

[173]

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER TARGET TO DB DB2B NONIBM SERVER ORA01 id "db2admin" password
"pworc" ;

SET QMANAGER QMB FOR APPLY SCHEMA;
SET APPLY SCHEMA ASN;

CREATE CONTROL TABLES FOR APPLY SERVER IN FEDERATED RMT SCHEMA system;

From CLP-B, run the file as:

$ asnclp -f SYSB_db2b_crt_apply_oracle.asnclp

The Q Apply tables control tables are split between DB2B and the Oracle database:

On DB2B: On Oracle:
ASN.IBMQREP_APPLYENQ

ASN.IBMQREP_APPLYMON

ASN.IBMQREP_APPLYPARMS

ASN.IBMQREP_APPLYTRACE

ASN.IBMQREP_SAVERI

ASN.IBMQREP_SPILLEDROW

ASN.IBMQREP_RECVQUEUES

ASN.IBMQREP_TARGETS

ASN.IBMQREP_TRG_COLS

ASN.IBMQREP_SPILLQS

ASN.IBMQREP_EXCEPTIONS

ASN.IBMQREP_DONEMSG

Creating a Replication Queue Map from
DB2A to target
The Replication Queue Map is created using SYSA_crt_rqma2b2.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A id "db2admin" password "pworc";
SET CAPTURE SCHEMA SOURCE ASN;
SET QMANAGER QMA FOR CAPTURE SCHEMA;

SET SERVER TARGET TO DB DB2B NONIBM SERVER ORA01 id "db2admin" password
"pworc";
SET QMANAGER QMB FOR APPLY SCHEMA;
SET APPLY SCHEMA ASN;

The Setup Procedures: Steps to Follow

[174]

CREATE REPLQMAP RQMA2B2
USING
ADMINQ "CAPA.ADMINQ.REMOTE"
RECVQ "CAPA.TO.APPB.RECVQ"
SENDQ "CAPA.TO.APPB.SENDQ.REMOTE"
NUM APPLY AGENTS 3
MEMORY LIMIT 9
ERROR ACTION S
HEARTBEAT INTERVAL 5
MAX MESSAGE SIZE 4;

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_rqma2b2.asnclp

Creating the Q subscription
The Q subscription is created using SYSA_crt_qsub2.asnclp file:

ASNCLP SESSION SET TO Q REPLICATION;
SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO DB DB2A id "DB2ADMIN" password "pworc";
SET SERVER TARGET TO DB DB2B NONIBM SERVER ORA01 id "DB2ADMIN" password
"pworc";
SET CAPTURE SCHEMA SOURCE ASN;
SET APPLY SCHEMA ASN;
SET QMANAGER QMA FOR CAPTURE SCHEMA;
SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB USING REPLQMAP RQMA2B2
(SUBNAME FEDSUB ERIC.T5
OPTIONS HAS LOAD PHASE N
TARGET NAME T5 FEDERATED T5NICK);

From CLP-A, run the file as:

$ asnclp -f SYSA_crt_qsub2.asnclp

Note the following:

1.	 The userIDs are in capitals and in quotes.
2.	 The source table on DB2A is the fully qualified name ERIC.T5.
3.	 The target table on Oracle will be called SYSTEM.T5 (because as we did not

specify a table schema in the TARGET NAME line, the schema will default to
what db2admin was mapped to on DB2B during the User Mapping task).

Appendix

[175]

4.	 The nickname created on DB2B will be called DB2ADMIN.T5NICK. Because we
only specified a federated target table name (T5NICK) and did not specify
a schema, the schema will default to what we specified in the SET SERVER
TARGET line.

Let's check what the preceding ASNCLP actually does. It generates two script/
control files called qrepcap.sql and qrepapp.sql, which run against DB2A
and DB2B respectively.

The file which runs against DB2A is called qrepcap.sql and contains:

-- DatabaseDB2LUOW (DB2A)

-- CONNECT TO DB2A USER XXXX using XXXX;

INSERT INTO ASN.IBMQREP_SUBS (subname, source_owner, source_name,
sendq, subtype, all_changed_rows, before_values, changed_cols_
only, has_loadphase, state, source_node, target_node, options_flag,
suppress_deletes, target_server, target_alias, target_owner, target_
name, target_type, apply_schema) VALUES ('FEDSUB', 'ERIC', 'T5',
'CAPA.TO.APPB.SENDQ.REMOTE', 'U', 'N', 'Y', 'N', 'N', 'N', 0, 0,
'NNNN', 'N', 'DB2B', 'DB2B', 'DB2ADMIN', 'T5NICK', 3, 'ASN');

INSERT INTO ASN.IBMQREP_SRC_COLS (subname, src_colname, is_key, col_
options_flag) VALUES ('FEDSUB', 'C1', 1, 'YNNNNNNNNN');

INSERT INTO ASN.IBMQREP_SRC_COLS (subname, src_colname, is_key, col_
options_flag) VALUES ('FEDSUB', 'C2', 0, 'YNNNNNNNNN');

INSERT INTO ASN.IBMQREP_SRC_COLS (subname, src_colname, is_key, col_
options_flag) VALUES ('FEDSUB', 'C3', 0, 'YNNNNNNNNN');

-- COMMIT;

Note the following:

1.	 We insert into the DB2A tables:
ASN.IBMQREP_SUBS

IBMQREP_SRC_COLS

The file which runs against DB2B is called qrepapp.sql and contains:
-- DatabaseDB2LUOW (DB2B)

-- CONNECT TO DB2B USER XXXX using XXXX;

SET PASSTHRU ORA01;

CREATE TABLE "SYSTEM"."T5"(C1 NUMBER(10) NOT NULL , C2
NUMBER(10), C3 CHARACTER(10), PRIMARY KEY(C1));

COMMIT;

SET PASSTHRU RESET;

COMMIT;

CREATE NICKNAME DB2ADMIN.T5NICK FOR ORA01."SYSTEM"."T5";

The Setup Procedures: Steps to Follow

[176]

ALTER NICKNAME DB2ADMIN.T5NICK ALTER COLUMN C1 LOCAL TYPE INTEGER

ALTER COLUMN C2 LOCAL TYPE INTEGER;

COMMIT;

INSERT INTO ASN.IBMQREP_TARGETS (subname, recvq, source_owner,
source_name, target_owner, target_name, modelq, source_server,
source_alias, target_type, federated_tgt_srvr, state, subtype,
conflict_rule, conflict_action, error_action, source_node, target_
node, load_type, has_loadphase) VALUES ('FEDSUB', 'CAPA.TO.APPB.
RECVQ', 'ERIC', 'T5', 'DB2ADMIN', 'T5NICK', 'IBMQREP.SPILL.
MODELQ', 'DB2A', 'DB2A', 3, 'ORA01', 'I', 'U', 'K', 'I', 'Q', 0,
0, 0, 'N');

INSERT INTO ASN.IBMQREP_TRG_COLS (subname, recvq, target_colname,
source_colname, is_key, target_colNo, mapping_type, src_col_map,
bef_targ_colname) VALUES ('FEDSUB', 'CAPA.TO.APPB.RECVQ', 'C1',
'C1', 'Y', 0, 'R', null, null);

INSERT INTO ASN.IBMQREP_TRG_COLS (subname, recvq, target_colname,
source_colname, is_key, target_colNo, mapping_type, src_col_map,
bef_targ_colname) VALUES ('FEDSUB', 'CAPA.TO.APPB.RECVQ', 'C2',
'C2', 'N', 1, 'R', null, null);

INSERT INTO ASN.IBMQREP_TRG_COLS (subname, recvq, target_colname,
source_colname, is_key, target_colNo, mapping_type, src_col_map,
bef_targ_colname) VALUES ('FEDSUB', 'CAPA.TO.APPB.RECVQ', 'C3',
'C3', 'N', 2, 'R', null, null);

-- COMMIT;

2.	 We use the SET PASSTHRU command from DB2B to pass thru to the Oracle
system to create the target table called SYSTEM.T5.

3.	 We create a nickname called DB2ADMIN.T5NICK for the target table
ORA01."SYSTEM"."T5".

4.	 We insert into the following replication control tables on Oracle:
ASN.IBMQREP_TARGETS

ASN.IBMQREP_TRG_COLS

Populating the source table
We are going to insert two records into our source table ERIC.T5.
From CLP-A, issue:

$ db2 "insert into eric.t5 values (5,1,'J') "

$ db2 "insert into eric.t5 values (6,2,'H') "

Appendix

[177]

Starting Q Capture on DB2A
Start Q Capture as described in the Unidirectional replication—Starting Q Capture and
Q Apply—Starting Q Capture on DB2A section.

Starting Q Apply on DB2B
Start Q Apply as described in the Unidirectional replication—Starting Q Capture and Q
Apply—Starting Q Apply on DB2B section.

Testing replication
We are now in a position to test our DB2 to Oracle replication. Insert a record into the
source table and check that the record is replicated to the Oracle table.

From CLP-A, issue:

$ db2 "insert into eric.t5 values (7,1,'H') "

From CLP-B, issue:

$ db2 "select * from db2admin.T5nick "

C1 C2 C3
----------- ----------- ----------
 7 1 H
 1 record(s) selected.

We can see that the record we inserted into DB2 on DB2A has now been replicated to
the nickname on DB2B. Note that we defined the Q subscription as NOT having an
initial load—hence the target table is empty.

And just to convince you, let's log onto the Oracle system and check:

From CLP-B, issue:

$ sqlplus system/pworc@ora01

SQL*Plus: Release 10.1.0.2.0 - Production on Tue Feb 6 15:30:01 2007
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production
With the Partitioning, OLAP and Data Mining options
SQL> select * from SYSTEM.T5;

 C1 C2 C3
---------- ---------- ----------
 7 1 H

The Setup Procedures: Steps to Follow

[178]

SQL> quit

Disconnected from Oracle Database 10g Enterprise Edition Release
10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

C:\Program Files\IBM\SQLLIB\BIN>

We can see that the record we inserted into DB2 on DB2A has now been replicated to
the Oracle table.

Now let's move on to looking at replicating from Oracle to DB2.

Replicating from Oracle to DB2
In this section, we look at replicating from Oracle to DB2. In previous releases, the
method used to replicate from Oracle to DB2 was to create a trigger on the Oracle table
and insert any inserted/updated/changed data into a staging table for post processing.
In DB2 9.7.1, this method has changed to one where no triggers are required, but Q
Capture uses the Oracle log mining capability to detect and extract changes to tables
of interest. These changes are then put onto a WebSphere MQ queue for onward
transmission to Q Apply. This process is shown in the following diagram:

Before we do any Q replication related work, we need to ensure that the Oracle
system is up and running correctly. As part of the work we will do, we need to be
able to connect to an Oracle database. We will use the system userid and connect to
the orcl database using the command:

>sqlplus system/passw0rd@orcl

Appendix

[179]

The relevant Oracle files in the C:\oracle\product\10.2.0\db_1\NETWORK\ADMIN
directory are:

•	 listener.ora

•	 sqlnet.ora

•	 tnsnames.ora

Following is the listener.ora file that Oracle generates and following it is the one
that we edited for the orcl database.

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = c:\oracle\product\10.2.0\db_1)
 (PROGRAM = extproc)
)
)

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
)
)

Edited listener.ora:

SID_LIST_LISTENER=
 (SID_LIST=
 (SID_DESC=
 (SID_NAME=ORCL)
 (ORACLE_HOME=C:\oracle\product\10.2.0\db_1)
)
)

LISTENER=
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1))
 (ADDRESS=(PROTOCOL=TCP)(HOST=IBM-09A0C0E7BD8)(PORT=1521))
)
)

The Setup Procedures: Steps to Follow

[180]

Following is the sqlnet.ora that Oracle generates and following it is the one
that we edited.

SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

Edited sqlnet.ora:

SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)
set oracle_sid=orcl

Following is the tnsnames.ora that Oracle generates and following it is the one that
we edited.

ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

Edited tnsnames.ora:

orcl =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = IBM-09A0C0E7BD8)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =

Appendix

[181]

 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

We need to set the ORACLE_HOME environment variable as:

>echo %ORACLE_HOME%

c:\oracle\product\10.2.0\db_1

And we also need to add the Oracle jar library into the CLASSPATH variable:

>echo %CLASSPATH%

C:\Program Files\IBM\SQLLIB\java\db2java.zip;C:\Program Files\IBM\
SQLLIB\java\db2jcc.jar;C:\Program Files\IBM\SQLLIB\java\sqlj.zip;C:\
Program Files\IBM\SQLLIB\java\db2jcc_license_cu.jar;C:\Program Files\
IBM\SQLLIB\bin;C:\Program Files\IBM\SQLLIB\java\common.jar;.;c:\
oracle\product\10.2.0\db_1\oui\jlib\classes12.jar;C:\Program Files\
IBM\WebSphere MQ\Java\lib\com.ibm.mqjms.jar;C:\Program Files\IBM\
WebSphere MQ\Java\lib\com.ibm.mq.jar;.

For us to be able to use the Oracle log as a replication source, we need to make the
following changes:

•	 Enable the database to use archive logging
•	 Enable supplemental logging
•	 Configure the Oracle LogMiner utility
•	 Test the java environment for ASNCLP
•	 Create an ASNCLP Oracle source configuration file
•	 Switch on supplemental logging for each table that we want to replicate
•	 Create the Q Apply control tables on DB2B
•	 Create a Replication Queue Map
•	 Create a Q subscription for the Oracle source

1.	 Enable the database to use archive logging.
We can check if the database is already enabled to use archive logging by
checking the database view V$DATABASE as follows:
C:\temp>sqlplus '/ as sysdba'

The Setup Procedures: Steps to Follow

[182]

Let's check the userid we have connected with:
SQL> show user ;

USER is "SYSTEM"

To list the Oracle database we are connected to:
SQL> SELECT * FROM global_name;

GLOBAL_NAME

ORCL

Now let's check the V$DATABASE database view:
SQL> select log_mode from v$database ;

LOG_MODE

NOARCHIVELOG

If the log mode shows NOARCHIVELOG, then we need to shutdown the data-
base and alter the database to use archive logging.
If we cannot access the database views, as the following shows:
SQL> select log_mode from sys.v$database ;

select * from sys.v$database

 *

ERROR at line 1:

ORA-00942: table or view does not exist

It could mean that ORACLE_SID is not set. We can shutdown the database and
alter the database to use archive logging as follows:
SQL> shutdown ;

Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> STARTUP MOUNT EXCLUSIVE;

ORACLE instance started.

Total System Global Area 535662592 bytes

Fixed Size 1348508 bytes

Variable Size 260050020 bytes

Database Buffers 268435456 bytes

Redo Buffers 5828608 bytes

Appendix

[183]

Database mounted.

SQL> ALTER DATABASE ARCHIVELOG;

Database altered.

SQL> ALTER DATABASE OPEN;

Database altered.

SQL> select log_mode from sys.v$database ;

LOG_MODE

ARCHIVELOG

We can see from the preceding output that the database is now enabled for
archive logging.

2.	 As we will use the Oracle LogMiner utility, we need to switch on
supplemental logging. We can check if supplemental logging is enabled
using the following query:
SQL> select supplemental_log_data_min from v$database ;

SUPPLEME

NO

We can switch on supplemental logging using the following command:
SQL> alter database add supplemental log data ;

Database altered.

If we check the supplemental logging option again:
SQL> select supplemental_log_data_min from v$database ;

SUPPLEME

YES

We can see that supplemental logging is enabled.

3.	 Configure the Oracle LogMiner utility.
We need to create a table space for the LogMiner utility. We should create a
file called c:\temp\create_ora_ts.txt containing the following:
CREATE TABLESPACE logmnrts$

DATAFILE

'c:\oracle\logmnr01.dbf'

SIZE 4M AUTOEXTEND ON

The Setup Procedures: Steps to Follow

[184]

NOLOGGING EXTENT MANAGEMENT LOCAL;

Change directory to c:\temp, enter sqlplus and run the file as follows:
SQL> @create_ora_ts.txt

Tablespace created.

Next we need to assign this new table space to the LogMiner utility
as follows:
SQL> EXECUTE SYS.DBMS_LOGMNR_D.SET_TABLESPACE('logmnrts$');

PL/SQL procedure successfully completed.

The final step is to create a LogMiner user account. We need to create a file
(create_asn_account.txt) containing:
create user asn identified by asn

default tablespace users

temporary tablespace temp

profile default account unlock;

grant connect, resource to asn;

grant create session to asn;

alter user asn quota unlimited on logmnrts$;

grant select any transaction to asn;

grant execute_catalog_role to asn;

grant select any table to asn;

grant select on sys.v_$database to asn;

grant select on sys.v_$logmnr_contents to asn;

grant select on sys.v_$logmnr_dictionary to asn;

grant select on sys.v_$logmnr_logfile to asn;

grant select on sys.v_$logmnr_logs to asn;

grant select on sys.v_$logmnr_parameters to asn;

grant select on sys.v_$logmnr_session to asn;

grant select on sys.v_$logmnr_transaction to asn;

grant select on sys.v_$log to asn;

grant select on sys.v_$logfile to asn;

grant select on sys.v_$archived_log to asn;

And run it from the sysdba account. We found that we could create the user
account from the system account, but that this account could not perform the
GRANT statements:

Appendix

[185]

SQL> @create_asn_account.txt

Grant succeeded.

Grant succeeded.

User altered.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

Grant succeeded.

4.	 Test the java environment for ASNCLP.
The ASNCLP interface uses the Oracle JDBC drivers. To use this we need to
set the CLASSPATH and ORACLE_HOME. We can do this either for a single
session, or set it globally:
> set CLASSPATH=C:\app\db2admin\product\11.1.0\db_1\oui\jlib\
classes12.jar;%CLASSPATH%

> set ORACLE_HOME=C:\oracle\product\10.2.0\db_1

Now we can test the drivers as follows:
 >java oracle.jdbc.driver.OracleDriver

Exception in thread "main" java.lang.NoSuchMethodError: main

This shows that the drivers are working.
If the output is:
Exception in thread "main" java.lang.NoClassDefFoundError: oracle/
jdbc/driver/OracleDriver

Caused by: java.lang.ClassNotFoundException: oracle.jdbc.driver.
OracleDriver

at java.net.URLClassLoader$1.run(Unknown Source)

at java.security.AccessController.doPrivileged(Native Method)

The Setup Procedures: Steps to Follow

[186]

at java.net.URLClassLoader.findClass(Unknown Source)

at java.lang.ClassLoader.loadClass(Unknown Source)

at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)

at java.lang.ClassLoader.loadClass(Unknown Source)

at java.lang.ClassLoader.loadClassInternal(Unknown Source)

Then the CLASSPATH and ORACLE_HOME variables are not set up correctly.

5.	 Create an ASNCLP Oracle source configuration file.
When we invoke ASNCLP to work with an Oracle source we need to use the
SET SERVER option to point to the Oracle database. So we need to create a
parameter file for the Oracle source (c:\temp\asnclp_server_oracle.txt)
and it will contain:
[ORCL]

type=ORACLE

Data source=ORCL

Host=4061AD4-L3ABK6B

port=1521

6.	 Create the replication control tables.
We are now in a position to create the Q replication control tables. We can
use the following ASNCLP command file:
ASNCLP SESSION SET TO Q REPLICATION;

SET SERVER CAPTURE TO CONFIG SERVER ORCL
FILE "c:\temp\asnclp_server_oracle.txt" ID system

 PASSWORD "passw0rd";

SET QMANAGER "QMA" FOR CAPTURE SCHEMA;
SET CAPTURE SCHEMA SOURCE ASN;

CREATE CONTROL TABLES FOR CAPTURE SERVER
USING RESTARTQ "CAPA.RESTARTQ"
ADMINQ "CAPA.ADMINQ" MEMORY LIMIT 64
MONITOR INTERVAL 600000;

Run the file as:
> asnclp -f asnclp_create_cap_tables.txt

If you get the error "ASN2022E The action ended in error. An SQL
error was encountered. SQL message is "ORA-01017: invalid
username/password; logon denied", it may mean that the password you
specified was not in double quotes.

Appendix

[187]

The ASNCLP command produces a file called qreplcap.sql, which contains
the SQL to create the Q Capture control tables and insert a record into the
IBMQREP_CAPPARMS table (all in Oracle). So we need to run this against the
orcl Oracle database:
C:\oracle>sqlplus asn/asn

SQL> @qreplcap.sql

Table created.

Index created.

Table created.

Index created.

Table created.

Table created.

Table created.

Table created.

Table altered.

Table created.

Index created.

Table created.

Index created.

Table created.

Index created.

Table created.

Table created.

Table created.

Index created.

Table created.

Index created.

Table created.

Table created.

Table altered.

1 row created.

We can check the tables which were created using the following command:
SQL> SELECT table_name FROM user_tables;

TABLE_NAME

IBMQREP_CAPPARMS

IBMQREP_SENDQUEUES

The Setup Procedures: Steps to Follow

[188]

IBMQREP_SUBS

IBMQREP_SRC_COLS

IBMQREP_SRCH_COND

IBMQREP_SIGNAL

IBMQREP_CAPTRACE

IBMQREP_CAPMON

IBMQREP_CAPQMON

IBMQREP_CAPENQ

IBMQREP_ADMINMSG

IBMQREP_IGNTRAN

IBMQREP_IGNTRANTRC

IBMQREP_CAPENVINFO

IBMQREP_EOLFLUSH

15 rows selected.

7.	 We need to switch on supplemental logging for each table that we want
to replicate.
Create and populate a source table:
> sqlplus system/passw0rd@orcl

SQL> CREATE TABLE scott.tb1 (c1 number(5), c2 number(5), c3
number(5)) ;

SQL> CREATE UNIQUE INDEX scott.tb1I on scott.tb1 (c1 asc) ;

Check the table definition as follows:
SQL> desc scott.tb1 ;

 Name Null? Type
 --- -------- -----------
 C1 NUMBER(5)
 C2 NUMBER(5)
 C3 NUMBER(5)

Populate the source table with two rows:
SQL> INSERT INTO scott.tb1 values (1,1,1);

SQL> INSERT INTO scott.tb1 values (2,2,2);

And switch on supplemental logging for the table:
SQL> ALTER TABLE scott.tb1 ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS
;

Table altered.

Appendix

[189]

We have finished all the work we need to do on the Oracle server, we now
turn our attention to the DB2 target server.

Create the Q Apply control tables on The Q Apply control tables should be
created as in the Unidirectional direction—The Q replication layer—Creating Q
Apply control tables on DB2B section.

8.	 Create a Replication Queue Map.
We need to create a Replication Queue Map going from QMA on the Oracle
server to QMB on the DB2 target server. We do this using the following
ASNCLP commands:
ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO CONFIG SERVER ORCL

FILE "c:\temp\asnclp_server_oracle.txt" ID system
 PASSWORD "passw0rd";

SET SERVER TARGET TO DB DB2B ;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;

SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE REPLQMAP "RQMO2B"

USING

ADMINQ "CAPA.ADMINQ.REMOTE"

RECVQ "CAPA.TO.APPB.RECVQ"

SENDQ "CAPA.TO.APPB.SENDQ.REMOTE"

NUM APPLY AGENTS 3

MEMORY LIMIT 9

ERROR ACTION S

HEARTBEAT INTERVAL 0

MAX MESSAGE SIZE 4;

Run the preceding file as:
> asnclp -f SYSA_crt_rqmo2b.asnclp

9.	 Create a Q subscription for the Oracle source.
When we create the Q subscription, we have two options for dealing with the
initial load. We can either specify that we should not do an initial load (HAS
LOAD PHASE = N), or specify that Q replication should choose the best option
(HAS LOAD PHASE = I, which is the default, and LOAD TYPE = 0).

The Setup Procedures: Steps to Follow

[190]

In this first example, we have specified that there will not be an initial load:
ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO CONFIG SERVER ORCL

FILE "c:\temp\asnclp_server_oracle.txt" ID system
 PASSWORD "passw0rd";

SET QMANAGER "QMA" FOR CAPTURE SCHEMA;

SET CAPTURE SCHEMA SOURCE ASN;

SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA SOURCE ASN;

SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;

SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB

USING REPLQMAP RQMO2B

(SUBNAME QSUBTB2 SCOTT.TB1

 OPTIONS HAS LOAD PHASE N

 TARGET NAME DB2ADMIN.TGTTB1

 TYPE USERTABLE

 KEYS(C1));

Run the above file as:
> asnclp -f SYSA_qsub_o2b_Noload.asnclp

We have now set up the Q replication environment and can move on to
starting Q Capture and Q Apply. As with all the scenarios, we need to start
the Listeners and Channels on QMA and QMB.

10.	 Start Q Capture.
We need to start Q Capture on the server that contains the Oracle database
and the QMA Queue Manager:
> asnoqcap capture_server=orcl

11.	 Start Q Apply.
We need to start Q Apply on the server that contains the DB2B DB2 database
and the QMB Queue Manager:
> start asnqapp apply_server=DB2B APPLY_PATH="C:\TEMP"

Appendix

[191]

12.	 Test replication.
We are now in a position to test replication. We can insert a record into the
Oracle database using the following commands:
SQL> INSERT INTO scott.tb1 values (3,3,3);

1 row created.

SQL> commit ;

Commit complete.

And let's check on DB2B that the record has been replicated:
> db2 connect to db2b

> db2 select * from db2admin.tgttb1

C1 C2 C3
----------- ----------- -----------
 3 3 3
 1 record(s) selected.

We can see that the record has been replicated (and that no initial load was
performed). Note that as we did not perform an initial load, we did not have
to set up any federation objects on DB2B.
Let's move on to the second example, where we have requested an initial
load. If we want to perform an initial load of the target DB2 database, then
we need to perform some additional steps to the ones detailed previously.
The first step is to enable the target instance for federation.
For the instance on which DB2B resides, issue:
> db2 update dbm cfg using FEDERATED YES

We should then stop and start the instance for the change to take effect.
On the target database (DB2B), we need to create a:

°° Oracle wrapper definition
°° Oracle server definition
°° User mapping

Create an Oracle wrapper using the following command:
> db2 CREATE WRAPPER NET8 LIBRARY 'db2net8.dll'

Create a server definition using the following command:
> db2 CREATE SERVER SORA TYPE ORACLE VERSION '10g' WRAPPER NET8
OPTIONS(ADD NODE 'orcl')

The Setup Procedures: Steps to Follow

[192]

Create a User Mapping using the following command:
> db2 CREATE USER MAPPING FOR GB043449 SERVER SORA OPTIONS (ADD
REMOTE_AUTHID 'scott', ADD REMOTE_PASSWORD 'passw0rd')

Note that the password is the password for scott on the Oracle database
(passw0rd in our test).
The following Q subscription example has Q Apply choosing the best load
method, and uses a nickname from DB2B to the Oracle database to perform
the initial load:
ASNCLP SESSION SET TO Q REPLICATION;

SET RUN SCRIPT NOW STOP ON SQL ERROR ON;

SET SERVER CAPTURE TO CONFIG SERVER ORCL

FILE "c:\temp\asnclp_server_oracle.txt" ID system
 PASSWORD "passw0rd";

SET QMANAGER "QMA" FOR CAPTURE SCHEMA;

SET CAPTURE SCHEMA SOURCE ASN;

SET SERVER TARGET TO DB DB2B;

SET CAPTURE SCHEMA ASN;

SET APPLY SCHEMA ASN;

SET QMANAGER QMA FOR CAPTURE SCHEMA;

SET QMANAGER QMB FOR APPLY SCHEMA;

CREATE QSUB (SUBNAME QSUBTB3

 REPLQMAP RQMO2B SCOTT.TB1

 OPTIONS HAS LOAD PHASE I TARGET NAME GB043449.TGTTB3

 TYPE NEW NICKNAME RMT SERVERNAME DB2B

 NICKTB1 LOAD TYPE 1);

Note that we are creating a nickname in the DB2B with a schema of GB043449.
This is the schema that we specified when we created the user mapping in a
previous step.
Before we can start Q Capture and Q Apply, we need to create a password
file for the Oracle data source on the server on which DB2B resides:
C:\temp>asnpwd init encrypt password

ASN1981I "Asnpwd" : "" : "Initial". The program completed
successfully using password file "asnpwd.aut".

C:\temp>asnpwd add alias orcl id system password passw0rd

ASN1981I "Asnpwd" : "" : "Initial". The program completed
successfully using password file "asnpwd.aut".

Appendix

[193]

C:\temp>asnpwd list

Alias: ORCL ID: system

Number of Entries: 1

We can now start Q Capture and Q Apply and test replication as the
preceding commands show. Note that as we specified that Q Apply should
perform an initial load then after we insert one record into the Oracle table,
we will see three records in DB2B, the two records from the initial load and
the record inserted into the Oracle table.

Conflict detection examples
We will work through two examples of conflict detection—one involving a foreign
key relationship, and the second example involving the update/delete of the same
record on different servers.

Conflict detection—foreign keys
Let's work through an example of conflict detection when foreign keys are involved
using a cascaded delete and employing bidirectional replication.

We have two servers DB2A and DB2B with tables XEMP and DEPT on each. Table DEPT
has a foreign key on Table XEMP:

In our test, we delete a row from table XEMP on server DB2A (which does a cascade
delete all in DEPT on DB2B). At the same time, we insert a row into table DEPT on
DB2B based on the foreign key value in XEMP.

We will use three CLP sessions called CLP-A, CLP-B, and CLP-C.

Let's create the two test tables XEMP and DEPT:

From CLP-A, issue:

$ db2 "CREATE TABLE db2admin.xemp (empno CHAR(6) NOT NULL, name
VARCHAR(12) NOT NULL, workdept CHAR(3))"

The Setup Procedures: Steps to Follow

[194]

$ db2 "ALTER TABLE db2admin.xemp ADD CONSTRAINT xemp_prim PRIMARY KEY
(empno)"

$ db2 "CREATE TABLE db2admin.dept (deptno CHAR(3) NOT NULL, deptname
CHAR(10) NOT NULL)"

$ db2 "ALTER TABLE db2admin.dept ADD CONSTRAINT dept_prim PRIMARY KEY
(deptno)"

$ db2 "ALTER TABLE db2admin.xemp FOREIGN KEY RDE (workdept) REFERENCES
db2admin.dept ON DELETE CASCADE"

We cannot enter a record into XEMP with a WORKDEPT if there isn't a corresponding
column in the DEPT table for WORKDEPT.

Let's first insert records into DEPT:

$ db2 "insert into dept values ('A01','Ops') "

$ db2 "insert into dept values ('A02','Serv') "

$ db2 "insert into dept values ('A03','Maint') "

Now populate the XEMP table:

$ db2 "insert into xemp values ('000001','Sue','A01') "

$ db2 "insert into xemp values ('000002','Mary','A01') "

$ db2 "insert into xemp values ('000003','Helen','A02') "

So let's try to insert a row into XEMP with a WORKDEPT value that is not in DEPT.

From CLP-A, issue:

$ db2 "insert into xemp values ('000004','Helen','A04') "

SQL0530N The insert or update value of the FOREIGN KEY "DB2ADMIN.
XEMP.RDE" is not equal to any value of the parent key of the parent
table. SQLSTATE=23503

And let's test that the cascaded delete works. We will delete from DEPT and check
that the delete has cascaded to EMP:

$ db2 "select * from xemp"

EMPNO NAME WORKDEPT

------ ------------ --------

000001 Sue A01

000002 Mary A01

000003 Helen A02

$ db2 "delete from dept where deptno = 'A01' "

Appendix

[195]

$ db2 "select * from xemp"

EMPNO NAME WORKDEPT
------ ------------ --------
000003 Helen A02

We can see that the cascaded delete has worked.

So let's put back the two records we deleted.

$ db2 "insert into xemp values ('000001','Sue','A01') "

$ db2 "insert into xemp values ('000002','Mary','A01') "

$ db2 "select * from xemp"

EMPNO NAME WORKDEPT
------ ------------ --------
000001 Sue A01
000002 Mary A01
000003 Helen A02
 3 record(s) selected.

Set up bidirectional replication for tables XEMP and DEPT between DB2A and DB2B
(Refer to the Bidirectional replication section).

The Q subscription load file is called SYSA_loadfk.asnclp and the content file is
called SYSA_contfk.txt:

set subgroup "TABT2";

set server multidir to db "DB2A";
set server multidir to db "DB2B";

set multidir schema "DB2A".ASN;
set multidir schema "DB2B".ASN;

set connection SOURCE "DB2A".ASN
TARGET "DB2B".ASN replqmap "RQMA2B";

set connection SOURCE "DB2B".ASN
TARGET "DB2A".ASN replqmap "RQMB2A";

set tables(DB2A.ASN.DB2ADMIN.DEPT, DB2B.ASN.DB2ADMIN.DEPT);

CREATE QSUB subtype b
from node db2a.asn
SOURCE
all changed rows y

has load phase I

The Setup Procedures: Steps to Follow

[196]

TARGET

conflict rule A

conflict action I

error action s

load type 0

oksqlstates "000"

from node db2b.asn

SOURCE

all changed rows N

has load phase N

TARGET

conflict rule A

conflict action F

error action s

load type 0

oksqlstates "000";

set tables (DB2A.ASN.DB2ADMIN.XEMP, DB2B.ASN.DB2ADMIN.XEMP);

CREATE QSUB subtype b

from node db2a.asn

SOURCE

all changed rows y

has load phase I

TARGET

conflict rule A

conflict action I

error action s

load type 0

oksqlstates "000"

from node db2b.asn

SOURCE

all changed rows N

has load phase N

TARGET

conflict rule A

conflict action F

error action s

load type 0

oksqlstates "000";

Appendix

[197]

From CLP-A, issue:

$ asnclp -f SYSA_loadfk.asnclp

Use the query in the Q subscription maintenance—To list the attributes of a Q subscription
section of Chapter 1, Administration Tasks, to list out the attributes of the
Q subscription.

The result from CLP-A is:

SUBNAME SUB_ID C B H L S STATE_TIME SUBGP SN TN

---------- ----------- - - - - - -------------------------- -------

DEPT0001 - Y Y N I N 2010-01-20-20.23.35.515000 TABT2 1 2

XEMP0001 - Y Y N I N 2010-01-20-20.23.35.562000 TABT2 1 2

SUBNAME TRGNAME TT APPSCHEMA SENDQ

---------- ---------- -- ---------- -------------------------

DEPT0001 DEPT 1 ASN CAPA.TO.APPB.SENDQ.REMOTE

XEMP0001 XEMP 1 ASN CAPA.TO.APPB.SENDQ.REMOTE

SUBNAME SUB_ID C B H L S STATE_TIME SUBGP SN TN

---------- ----------- - - - - - -------------------------- -------

DEPT0001 - Y Y N I N 2010-01-20-20.23.35.515000 TABT2 1 2

XEMP0001 - Y Y N I N 2010-01-20-20.23.35.562000 TABT2 1 2

The result from CLP-B is:

SUBNAME SRCOWNER SRCNAME TRGSRV TRGALIAS TRGOWNER

---------- ---------- ---------- ---------- -------- ----------

DEPT0002 DB2ADMIN DEPT DB2A DB2A DB2ADMIN

XEMP0002 DB2ADMIN XEMP DB2A DB2A DB2ADMIN

SUBNAME TRGNAME TT APPSCHEMA SENDQ

---------- ---------- -- ---------- -------------------------

DEPT0002 DEPT 1 ASN CAPB.TO.APPA.SENDQ.REMOTE

XEMP0002 XEMP 1 ASN CAPB.TO.APPA.SENDQ.REMOTE

SUBNAME SUB_ID C B H L S STATE_TIME SUBGP
SN TN

---------- ----------- - - - - - -------------------------- -------

DEPT0002 - N Y N N I 2010-01-20-20.23.35.453000 TABT2 2 1

XEMP0002 - N Y N N I 2010-01-20-20.23.35.484000 TABT2 2 1

The Setup Procedures: Steps to Follow

[198]

Start Q Capture—follow the instructions in the Q Capture administration—Starting Q
Capture section of Chapter 6.

Start Q Apply—follow the instructions in the Q Apply administration—Starting Q
Apply section of Chapter 6.

So now let's issue a delete on DB2A from DEPT where DEPTNO is A01 and insert a row
on DB2B into XEMP with a WORKDEPT value of A01 at the same time. We will do this
using a script.

Create a script file called c:\temp\fk00.bat. This will contain:

db2cmd fk01

db2cmd fk02

Create the .BAT file fk01.bat to contain:

@echo fk01 - delete

db2 connect to DB2A user

db2 select current timestamp from sysibm.sysdummy1 with ur

db2 delete from dept where deptno = 'A01'

db2 select current timestamp from sysibm.sysdummy1 with ur

Create the .BAT file fk02.bat to contain:

@echo fk02 - insert

db2 connect to DB2B

db2 select current timestamp from sysibm.sysdummy1 with ur

db2 insert into xemp values ('00004','Heather','A01')

db2 select current timestamp from sysibm.sysdummy1 with ur

From CLP-C, run fk00 as follows:

C:\temp> fk00

When we run the fk00.bat file, two command windows open

Appendix

[199]

fk00
fk01 fk02
fk01 - delete

> db2 connect to DB2A

> db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2010-01-20-21.08.05.968000

> db2 delete from dept where
deptno = 'A01'

DB20000I The SQL command
completed successfully.

> db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2010-01-20-21.08.06.468000

fk02 - insert

> db2 connect to DB2B

> db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2010-01-20-21.08.06.093000

> db2 insert into xemp values
('00004','Anita','A01')

DB20000I The SQL command
completed successfully.

> db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2010-01-20-21.08.06.484000

We are trying to propagate a delete from DB2A to DB2B and an insert from
DB2B to DB2A.

The Setup Procedures: Steps to Follow

[200]

Check whether the DELETE and INSERT have worked as per the preceding output.

From CLP-A issue: From CLP-B issue:
$ db2 connect to db2a

$ db2 select * from dept

DEPTNO DEPTNAME

------ ----------

A02 Serv

A03 Maint

 2 record(s) selected.

$ db2 select * from xemp

EMPNO NAME WORKDEPT

------ ------------ --------

000003 Helen A02

 1 record(s) selected.

$ db2 connect to db2b

$ db2 select * from dept

DEPTNO DEPTNAME

------ ----------

A02 Serv

A03 Maint

 2 record(s) selected.

$ db2 select * from xemp

EMPNO NAME WORKDEPT

------ ------------ --------

000003 Helen A02

 1 record(s) selected.

We can see that the INSERT issued on DB2B has not been propagated but the DELETE
issued on DB2A has been propagated.

Let's check the IBMQREP_TARGETS table on each system. Use the following query:

$ db2 "SELECT SUBSTR(subname,1,10) AS subname, conflict_action FROM asn.
ibmqrep_targets"

The result from CLP-A is:

SUBNAME CONFLICT_ACTION

---------- ---------------

DEPT0002 F

XEMP0002 F

Appendix

[201]

The result from CLP-B is:

SUBNAME CONFLICT_ACTION

---------- ---------------

DEPT0001 I

XEMP0001 I

The CONFLICT_ACTION for Q subscriptions DEPT0002/XEMP0002 is F—which means
that Q Apply on DB2B will force the changes that it receives from DB2A.

The CONFLICT_ACTION for Q subscriptions DEPT0001/XEMP0001 is I—which means
that Q Apply on DB2A will not force the change that it receives from DB2B.

Let's remind ourselves of what we are trying to do—we are trying to propagate a
DELETE from DB2A to DB2B and an INSERT from DB2B to DB2A.

Therefore the DELETE from DB2A will be forced onto DB2B and the INSERT from DB2B
to DB2A will be ignored and sent to the IBMQREP_EXCEPTIONS table on DB2A.

Select from the IBMQREP_EXCEPTIONS table on both systems using the query:

$ db2 "select exception_time, substr(subname,1,10) as subname,reason,
sqlcode, sqlstate, substr(operation,1,10) as op, is_applied as a,
conflict_rule,src_trans_time from asn.ibmqrep_exceptions"

From CLP-A, running the preceding query results in:

EXCEPTION_TIME SUBNAME REASON SQLCODE
SQLSTATE OP A CONFLICT_RULE SRC_TRANS_TIME

-------------------------- ---------- ------------ ----------- ------
-- ---------- - ------------- --------------------------

2010-01-20-21.08.07.828000 XEMP0002 SQLERROR -530 23503
INSERT N A 2010-01-20-21.08.06.000024

Let's look at the contents of the IBMQREP_EXCEPTIONS table in more detail. We can
see what caused the exception by looking in the TEXT column. The query we will
use is:

$ db2 "select is_applied, substr(text,1,1000) from asn.ibmqrep_
exceptions"

On CLP-A:

N INSERT INTO "DB2ADMIN"."XEMP"("EMPNO", "NAME",
"WORKDEPT") VALUES ('00004 ', 'Anita', 'A01')

The Setup Procedures: Steps to Follow

[202]

On CLP-B, the IBMQREP_EXCEPTION table is empty.

And let's check the status of Q Capture and Q Apply. Q Apply on DB2A has
terminated, and its log shows the following message:

2010-01-20-21.08.07.765000 <appAgnt::handleRowError> ASN8999D A SQL
error occured for subscription "XEMP0002" for receive queue "CAPB.
TO.APPA.RECVQ" (SQL code "-530"), while applying a "INSERT

2010-01-20-21.08.07.765000 <appAgnt::handleRowError> ASN0552E "Q
Apply" : "ASN" : "BR00000AG005" : The program encountered an SQL
error. The server name is "". The SQL request is "INSERT". The table
name is ""DB2ADMIN"."XEMP"". The SQLCODE is "-530". The SQLSTATE is
"23503". The SQLERRMC is "DB2ADMIN.XEMP.RDE". The SQLERRP is " ".

2010-01-20-21.08.07.843000 <appAgnt::handleRowError> ASN7522E "Q
Apply" : "ASN" : "BR00000AG005" : The Q Apply program stopped because
it encountered an error for Q subscription "XEMP0002" (receive queue
"CAPB.TO.APPA.RECVQ", replication queue map "RQMB2A").

2010-01-20-21.08.07.859000 <QAtxs::applyTran> ASN0589I "Q Apply" :
"ASN" : "BR00000AG005" The program received an unexpected return code
"2012" from routine "handleRowError".

2010-01-20-21.08.07.859000 <QAtxs::applyTran> ASN8999D problem
applying transaction because of a row error

2010-01-20-21.08.07.859000 <appAgntMain-retry> ASN0589I "Q Apply" :
"ASN" : "BR00000AG005" The program received an unexpected return code
"2012" from routine "applyTran".

2010-01-20-21.08.07.859000 <appAgntMain> ASN8999D Apply agent
'BR00000AG005' terminating with code 2012

Because we had the ERROR ACTION set to S, this means that Q Apply will stop without
applying the transaction. Perhaps a better value would be the default value of Q,
which means that Q Apply stops reading from the Receive Queue and all conflicting
rows are inserted into the IBMQREP_EXCEPTIONS table.

From the Q Apply log and the entry in the IBMQREP_EXCEPTIONS table, we can see
that Q Apply is trying to insert a row into the XEMP table, that this is failing with an
SQLSTATE of 23503 and that the Q subscription name is XEMP0002.

The row that Q Apply is trying to apply on DB2A is still on the Receive Queue. We
cannot simply delete the message, because of the dense numbering safeguard.

What we have to do is tell Q Apply to ignore the SQL that the INSERT statement is
generating. We do this by inserting the SQLSTATE into the OKSQLSTATES column of
the IBMQREP_TARGETS table on DB2A.

Appendix

[203]

Let's first see what is in the table.

$ db2 "select substr(subname,1,10) as subname, oksqlstates from asn.
ibmqrep_targets "

SUBNAME OKSQLSTATES

---------- -----------

DEPT0002 000

XEMP0002 000

So we need to update the OKSQLSTATES value for Q subscription XEMP0002.

We have the SQLSTATE that we want to add to the IBMQREP_EXCEPTIONS table, and
can code an UPDATE statement as follows:

$ db2 "UPDATE asn.ibmqrep_targets SET OKSQLSTATES = ' "000",""23503"" '
WHERE SUBNAME = 'XEMP0002' "

Note the use of the two sets of double quotation marks around the
SQLSTATE value 23503.

And selecting from the table:

SUBNAME OKSQLSTATES

---------- ------------------------

DEPT0002 000

XEMP0002 000,"23503"

Now we can try and start Q Apply on DB2A. This time it will start.

To test that everything is back to normal, insert a record on DB2B and check that it
has been replicated to DB2A.

From CLP-B, issue:

$ db2 "INSERT INTO xemp(empno, name, workdept) VALUES('00004', 'Anna',
'A02')"

From CLP-A, issue:

$ db2 select * from xemp

EMPNO NAME WORKDEPT

------ ------------ --------

00004 Anna A02

000003 Helen A02

The Setup Procedures: Steps to Follow

[204]

The last task we have to do is to remove the 23503 SQLTSTATE from the
IBMQREP_TARGETS table:

$ db2 "UPDATE asn.ibmqrep_targets SET OKSQLSTATES = ' "000" ' WHERE
SUBNAME = 'XEMP0002' "

We have now finished looking at conflict detection with foreign keys.

Conflict detection—update/delete conflict
The example in this section looks at UPDATE/DELETE conflict detection
and resolution.

We have two servers DB2A and DB2B with table HMTAB on each. We are using
bidirectional replication. On server DB2A, we delete a row from table HMTAB and on
server DB2B, we update the same row at exactly the same time.

There are two main scenarios using bidirectional replication and are shown in the
following diagram, where we normally update only one side (Scenario 1) or where
we update both sides (Scenario 2).

Appendix

[205]

The questions we need answers to are:

•	 Is this scenario picked up by conflict detection?
•	 Which server wins?

Note that the DB2 Information Center says …Even the highest level
of value-based conflict detection (checking all columns) in bidirectional
replication is not as robust as version-based conflict detection in P2P
replication. Some situations might result in a conflict not being detected.
Recommendation: If you expect conflicts by application design, then choose a
P2P configuration.

Scenario 1—Bidirectional active/passive
In Scenario 1, we assume that the application is only writing to one database at a
time. Typically, applications will be updating DB2A and not DB2B, and DB2B will
be acting as a read-only copy of the data. If there is a problem with DB2A and it
goes down, then the application will switch to the other server and start updating
DB2B. After we fix the problem on DB2A and bring it back up, we will want to send
the changes from DB2B back over to DB2A, and we will want to force any conflicts
because DB2B will have the most recent information. We should not end up in a
situation where DB2A has to force conflicts on to DB2B because no applications will
update DB2B unless there is a problem with DB2A.

If we have two servers DB2A and DB2B and we want to make DB2A the primary
database (the one which will normally be used for updates), then select DB2B as the
server which should take precedence if a conflict is detected on screen 6 "Conflicts" of
Create Q Subscriptions (as shown in the following screenshot):

The answer to which sever wins depends on the CONFLICT_ACTION column in
IBMQREP_TARGETS (I is the default). This value determines the action to take when a
row change is invalid. For example, row to delete/update not found.

The Setup Procedures: Steps to Follow

[206]

So let's set up a scenario to test out the delete/update conflict detection.

To test out Scenario 1, we will use three CLP sessions—CLP-A, CLP-B, and CLP-C.

In general, we will follow the bidirectional setup steps in the Bidirectional replication
section, but with some additional steps in each layer.

1.	 Perform the DB2 layer step and in addition perform the following, where we
will create our test table called HMTAB:
From CLP-A, issue:
$ db2 "create table eric.hmtab (id int not null, name char(10),
dept char(5)) "

$ db2 "alter table eric.hmtab add primary key (id) "

$ db2 "insert into eric.hmtab values(1,'Heather','Ops') "

2.	 Perform the WebSphere MQ layer—there are no addition steps.
3.	 For the Q replication layer:

Create the two Replication Queue Maps RQMA2B and RQMB2A as described
in the Bidirectional replication—The Q replication layer—Creating a Replication
Queue Map for DB2A to DB2B and Creating a Replication Queue Map for DB2B to
DB2A sections.

Now we come to defining the Q subscription. What should we specify for the conflict
rules? Say we want DB2A to be the primary database and DB2B to be the backup
database (which means that DB2B is the winner and DB2A the loser in any conflict).

The header section of the content file looks like this:

set subgroup "TABT2";

set server multidir to db "DB2A";

set server multidir to db "DB2B";

set multidir schema "DB2A".ASN;

set multidir schema "DB2B".ASN;

set connection SOURCE "DB2A".ASN

TARGET "DB2B".ASN replqmap "RQMA2B";

set connection SOURCE "DB2B".ASN

TARGET "DB2A".ASN replqmap "RQMB2A";

set tables("DB2A".ASN.ERIC.HMTAB, "DB2B".ASN.FRED.HMTAB);

Appendix

[207]

Next is the option section of the content file. This tells Q replication how to handle
conflicts and so on. The section is divided into two sub-sections, each starting with
the keyword from node. The first sub-section says from node db2a.asn, so we are
coming from DB2A. Half way down the section it says TARGET and then we specify
conflict rule (A), conflict action (I), error action (s), load type (0), and
oksqlstates ("000"). This means that at the target side (DB2B), we want a conflict
action of I, which means that any conflicts coming from DB2A are ignored.

The Q subscription options section will look like this:

Let's store the Q subscription code in a content file called SYSA_contdelupd.txt,
with a load file called SYSA_loaddelupd.asnclp.

Create the Q subscription. From CLP-A, issue:

$ asnclp -f SYSA_loaddelupd.asnclp

Use the query in the Q subscription maintenance—To list the attributes of a Q subscription
section of Chapter 6, to list out the attributes of the Q subscription.

The result from CLP-A is:

SUBNAME SRCOWNER SRCNAME TRGSRV TRGALIAS TRGOWNER>

HMTAB0001 ERIC HMTAB DB2B DB2B FRED >

TRGNAME TT APPSCHEMA SENDQ >

HMTAB 1 ASN CAPA.TO.APPB.SENDQ.REMOTE >

The Setup Procedures: Steps to Follow

[208]

SUB_ID C B H L S STATE_TIME SUBGP SN TN
----- - - - - - -------------------------- ---------- -- -- -- --
 - Y Y N I N 2007-04-08-16.32.50.531000 TABT2 1 2

The result from CLP-B is:

SUBNAME SRCOWNER SRCNAME TRGSRV TRGALIAS TRGOWNER>
HMTAB0002 FRED HMTAB DB2A DB2A ERIC >

TRGNAME TT APPSCHEMA SENDQ >
HMTAB 1 ASN CAPB.TO.APPA.SENDQ.REMOTE >

SUB_ID C B H L S STATE_TIME SUBGP SN TN
----------- - - - - - -------------------------- ---------- -- --
 - N Y N I I 2007-04-08-16.32.50.546000 TABT2 2 1

To start Q Capture, follow the instructions in the Q Capture administration—To start Q
Capture section of Chapter 6.

To start Q Apply, follow the instructions in the Q Apply administration—To start Q
Apply section of Chapter 6.

We can now insert one row into the HMTAB table on DB2A. From CLP-A, issue:

$ db2 "insert into eric.hmtab values(2,'Helen','Trn') "

Check that the row has been replicated to DB2B.

From CLP-B, issue:

$ db2 "select * from fred.hmtab"

ID NAME DEPT

----------- ---------- -----

 1 Heather Ops

 2 Helen Trn

We should see the row we inserted with an ID value of 2.

Now insert one row into the HMTAB table on DB2B. From CLP-B, issue:

$ db2 "insert into fred.hmtab values(3,'Chantal','Mgm') "

Check that the row has been replicated to DB2A. From CLP-A, issue:

$ db2 "select * from eric.hmtab"

Appendix

[209]

ID NAME DEPT

----------- ---------- -----

 1 Heather Ops

 2 Helen Trn

 3 Chantal Mgm

We should see the row we inserted with an ID value of 3.

We have inserted a row on DB2A and seen it replicate to DB2B and we have inserted
a row into DB2B and seen it replicate to DB2A. We have now shown that bidirectional
replication is working.

We can now run a script to delete record two from table HMTAB in database DB2A and
simultaneously update the same record in database DB2B. We do this as follows.

Create a BAT file called c:\temp\conf00.bat. This will contain:

db2cmd conf01

db2cmd conf02

Create the BAT file conf01.bat to contain:

@echo conf01 - delete

db2 connect to DB2A

db2 select current timestamp from sysibm.sysdummy1 with ur

db2 delete from eric.hmtab where id = 2

db2 select current timestamp from sysibm.sysdummy1 with ur

Create the BAT file conf02.bat to contain:

@echo conf02 - update

db2 connect to DB2B

db2 select current timestamp from sysibm.sysdummy1 with ur

db2 update fred.hmtab set dept = 'XXX' where id = 2

db2 select current timestamp from sysibm.sysdummy1 with ur

From CLP-C run conf00 as follows:

C:\temp> conf00

The Setup Procedures: Steps to Follow

[210]

When we run the conf00.bat file, two command windows open:

conf00
conf01 conf02
conf01 - delete

$ db2 connect to DB2A

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2007-04-08-16.54.28.609000

$ db2 delete from eric.hmtab where
id = 2

DB20000I The SQL command
completed successfully.

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2007-04-08-16.54.28.796000

conf02 - update

$ db2 connect to DB2B

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2007-04-08-16.54.28.312000

$ db2 update fred.hmtab set dept
= 'XXX' where id = 2

DB20000I The SQL command
completed successfully.

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2007-04-08-16.54.28.500000

Check that the DELETE and UPDATE have worked as per the preceding output.

Now select from the table from both databases. From CLP-A, issue:

$ db2 "select * from eric.hmtab"

ID NAME DEPT

----------- ---------- -----

 1 Heather Ops

 2 Helen XXX

 3 Chantal Mgm

Appendix

[211]

From CLP-B, issue:

$ db2 "select * from fred.hmtab"

ID NAME DEPT

----------- ---------- -----

 1 Heather Ops

 2 Helen XXX

 3 Chantal Mgm

We can see that the DELETE has been processed for record 2—which means that the
UPDATE we issued failed.

Let's find out why. First let us check the IBMQREP_TARGETS table on each system
using the following query:

$ db2 "select substr(subname,1,10) as subname, conflict_action from asn.
ibmqrep_targets"

From CLP-A, running the preceding query results in:

SUBNAME CONFLICT_ACTION

---------- ---------------

HMTAB0002 F

On DB2A, we can see that the CONFLICT_ACTION value for Q subscription
HMTAB0002 is F.

From CLP-B, running the preceding query results in:

SUBNAME CONFLICT_ACTION

---------- ---------------

HMTAB0001 I

On DB2B, we can see that the CONFLICT_ACTION value for Q subscription
HMTAB0001 is I.

Let's remind ourselves what I and F mean:

•	 I: This is a default value. Q Apply does not apply the conflicting row but
applies other rows in the transaction.

•	 F: Q Apply tries to force the change.

Next let's select from the IBMQREP_EXCEPTIONS table on both DB2A and DB2B.

The Setup Procedures: Steps to Follow

[212]

The query we will use is:

$ db2 "select exception_time, substr(subname,1,10) as subname, reason,
sqlcode, sqlstate, substr(operation,1,10) as op, is_applied as a,
conflict_rule as CR, src_trans_time from asn.ibmqrep_exceptions"

From CLP-A, running the preceding query results in:

EXCEPTION_TIME SUBNAME REASON SQLCODE SQLSTATE OP >
2007-04-08-16.54.31.796000 HMTAB0002 NOTFOUND 100 02000 UPDATE >

A CR SRC_TRANS_TIME
Y A 2007-04-08-15.54.28.000036

What the preceding command tells us is that Q subscription HMTAB0002 tried to
UPDATE a record (on DB2A), but the record was NOTFOUND (because we had deleted
it), but the ACTION is Y which means do apply, so therefore we do the UPDATE. The
ACTION is Y because the CONFLICT ACTION for the Q subscription HMTAB0002 is F.

From CLP-B, running the preceding query results in:

EXCEPTION_TIME SUBNAME REASON SQLCODE SQLSTATE OP >
2007-04-08-16.54.32.812000 HMTAB0001 CHECKFAILED 100 02000 DELETE >

A CR SRC_TRANS_TIME
N A 2007-04-08-15.54.28.000050

What the preceding command tells us is that Q subscription HMTAB0001 tried to
DELETE a record (on DB2B), but we encountered a CHECKFAILED, which means …the
conflict detection rule was to check all values or check changed values, and a nonkey
value was not as expected. The ACTION is no apply, so we do not do anything (apart
from log the exception).

We can see that on DB2A we trapped the UPDATE command and on DB2B we trapped
the DELETE command.

Note also that the SRC_TRANS_TIME value is the same on DB2A and DB2B—this is the
way to relate the two exceptions.

From the SELECT statement on both tables we saw that the UPDATE was honored and
the DELETE wasn't. So why has this occurred?

Appendix

[213]

On DB2A, the CONFLICT_ACTION for the target table is I–which means that Q Apply
on DB2B will not force the change that it received from DB2A which is the DELETE
command. On DB2B, the CONFLICT_ACTION for the target table is F—which means
that Q Apply on DB2A will force the change that it received from DB2B, which is the
UPDATE command.

The preceding setup makes DB2B the master copy and DB2A the slave copy. Changes
on DB2B will always take precedence over changes made to the same row on DB2A.

Let's look at the contents of the IBMQREP_EXCEPTION table in more detail. We can see
what caused the exception by looking in the TEXT column. The query we would
use is:

$ db2 "select is_applied, substr(text,1,1000) from asn.ibmqrep_
exceptions"

From CLP-A, running the preceding query results in:

Y UPDATE "ERIC"."HMTAB" SET "DEPT" = 'XXX ' WHERE "ID" = 2
AND "DEPT" = 'Trn ' AND "NAME" = 'Helen '

We can see that the exception was applied (the first Y) and we can see what
was applied.

From CLP-B, running the preceding query results in:

N DELETE FROM "FRED"."HMTAB" WHERE "ID" = 2 AND "DEPT" =
'Trn ' AND "NAME" = 'Helen '

We can see that the exception was NOT applied (the first N) and what was rejected.

We have now finished the main part of the scenario.

We have seen that the choice of which server should take precedence if a conflict
is detected when defining a Q Subscription for a table determines which database is
the master and which is the slave.

In this scenario, if server A fails we would ONLY switch the application to server
B, when all the transactions from server A have been processed on server B. To
determine when this point has been reached, we would need to monitor the Receive
Queue on server B.

> runmqsc QMB

: dis ql(CAPA.TO.APPB.RECVQ) curdepth

Only when the current depth was zero would all the transactions from server A have
been processed and we could now connect the application to server B.

The Setup Procedures: Steps to Follow

[214]

Scenario 2—Bidirectional no master
Now let's look at how to make neither database, the master. From the Replication
Center we have to specify that neither server takes precedence when we set up the
Q subscription:

If we are using ASNCLP commands, then the conflict action should be set to I
for both nodes. For the test, we will use a table called HMTAB3 instead of HMTAB, but
structured the same as HMTAB.

If we create the table and Q subscription. From CLP-A, issue:

$ db2 "create table eric.hmtab3 (id int not null, name char(10), dept
char(5)) "

$ db2 "alter table eric.hmtab3 add primary key (id) "

$ db2 "insert into eric.hmtab3 values(1,'Heather','Ops') "

And create a Q subscription with the conflict action set to I for both nodes, then
if we check the CONFLICT_ACTION column of the IBMQREP_TARGETS table on each
system using the following query, we should see the answers displayed:

From CLP-A, issue:

$ asnclp -f SYSA_loaddelupd3.asnclp

$ db2 "select substr(subname,1,10) as subname, conflict_action from asn.
ibmqrep_targets"

SUBNAME CONFLICT_ACTION

---------- ---------------

HMTAB30001 I

On DB2A, we can see that the CONFLICT_ACTION value is I.

From CLP-B, issue the preceding query:

SUBNAME CONFLICT_ACTION

---------- ---------------

HMTAB30002 I

Appendix

[215]

On DB2B, we can see that the CONFLICT_ACTION value is I.

We can see that the CONFLICT_ACTION values for HMTAB3 have changed from the
settings for table HMTAB—they are now both I.

Now if we run conf30, we get:

conf300
conf301 conf302
conf01 - delete

$ db2 connect to DB2A

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2005-01-03-19.28.43.484000

$ db2 delete from eric.hmtab where
id = 2

DB20000I The SQL command completed
successfully.

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2005-01-03-19.28.43.624000.

conf02 - update

$ db2 connect to DB2B

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2005-01-03-19.28.43.675002

$ db2 update fred.hmtab set dept
= 'XXX' where id = 2

DB20000I The SQL command completed
successfully.

$ db2 select current timestamp
from sysibm.sysdummy1 with ur

1

2005-01-03-19.28.43.775000

We can check that the DELETE and UPDATE have worked as per the preceding output
by selecting from both databases.

From CLP-A, issue:

$ db2 "select * from eric.hmtab3"

The Setup Procedures: Steps to Follow

[216]

ID NAME DEPT
----------- ---------- -----
 1 Heather Ops
 3 Chantal Mgm

We can see that the DELETE has been processed for record 2.

From CLP-B, issue:

$ db2 "select * from fred.hmtab3"

ID NAME DEPT
----------- ---------- -----
 1 Heather Ops
 2 Helen XXX
 3 Chantal Mgm

We can see that the UPDATE has been processed for record 2.

Let's look at the contents of the IBMQREP_EXCEPTIONS table in more detail using the
following query:

$ db2 "select exception_time, substr(subname,1,10) as subname, reason,
sqlcode, sqlstate, substr(operation,1,10) as op, is_applied as a,
conflict_rule as CR, src_trans_time from asn.ibmqrep_exceptions"

From CLP-A, running the preceding query results in:

EXCEPTION_TIME SUBNAME REASON SQLCODE SQLSTATE .>
2004-12-31-14.22.28.893000 HMTAB0001 NOTFOUND 100 02000 . >
2005-01-02-13.16.01.164001 HMTAB20001 NOTFOUND 100 02000 .>
2005-01-03-19.28.46.348000 HMTAB30001 NOTFOUND 100 02000 .>

OP A CONFLICT_RULE SRC_TRANS_TIME
UPDATE Y - 2004-12-31-14.22.27.000001
UPDATE N - 2005-01-02-13.16.00.000001
UPDATE N - 2005-01-03-19.28.43.000001

From CLP-A, running the preceding query results in:

EXCEPTION_TIME SUBNAME REASON SQLCODE SQLSTATE
>

2004-12-31-14.22.30.806000 HMTAB0002 CHECKFAILED 100 02000 >

2005-01-02-13.16.03.718000 HMTAB20002 CHECKFAILED 100 02000 >

2005-01-03-19.28.44.646000 HMTAB30002 CHECKFAILED 100 02000 >

Appendix

[217]

OP A CONFLICT_RULE SRC_TRANS_TIME

DELETE N - 2004-12-31-14.22.27.000001

DELETE Y - 2005-01-02-13.16.00.000001

DELETE N - 2005-01-03-19.28.43.000001

Secondly, use the following query:

$ db2 "select is_applied, substr(text,1,1000) from asn.ibmqrep_
exceptions"

From CLP-A the above command returns:

N <?xml version="1.0" encoding="ibm-1252_P100-2000" ?><msg
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespac
eSchemaLocation="mqcap.xsd" version="1.0.0" dbName="DB2A"><updateRow
subName="HMTAB20001"><col name="ID" isKey="1"><integer><afterVal>2</
afterVal></integer></col><col name="DEPT"><char><beforeVal>Trn </
beforeVal><afterVal>XXX </afterVal></char></col><col name="NAME"><ch
ar><afterVal>Helen </afterVal></char></col></updateRow></msg>

We can see that the exception was NOT applied (the N at the beginning of the line)
and we can see what was not applied.

From CLP-B, the preceding command returns:

N <?xml version="1.0" encoding="ibm-1252_P100-2000"
?><msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocatio

n="mqcap.xsd" version="1.0.0" dbName="DB2B"><deleteRow
subName="HMTAB30002"><col name="ID" isKey="1"><integer>2</integer></
col></deleteRow></msg>

We can see that the exception was not applied (the N at the beginning of the line) and
that what was not applied was a DELETE command.

We can see that neither DB2A or DB2B are the master database—each database will
apply the updates to its own system. If there are any conflicts, then these are logged
and not applied, but neither side wins. This could lead to the contents of the two
databases diverging.

We have now finished looking at what happens if we do not make either DB2A or
DB2B the master database.

The Setup Procedures: Steps to Follow

[218]

Scenario 3—Bidirectional active/active
In a bidirectional scenario, we need to evaluate whether conflicts are possible from
an application point of view. Consider an expanded diagram of Scenario 2. We have
bidirectional replication set up between two systems (SY1 and SY2):

We do not want an active/passive setup, but one where our application will update
the same table on both systems, but at any one time each database must have a
complete set of records from both systems. To achieve this, the application has been
altered so that users attached thru the application to SY1 will process the odd rows of
TAB1 and users attached thru the application to SY2 will process the even rows of TAB1.

This scenario will handle all the standard failure scenarios that Q replication
can handle (that is, server SY1 becomes unavailable and then becomes available
again). One failure scenario that we have to be aware of is what happens if the Q
subscription for TAB1 becomes inactive for whatever reason (perhaps someone has
mistakenly inactivated it)—what happens then? The applications on SY1 and SY2
will still insert/update/delete their respective rows in TAB1, but these operations
will NOT get replicated to the other system, which means that the table contents will
diverge, which is clearly bad news! To rectify this problem is not a trivial matter.
We cannot simply activate the Q subscription again, as the table contents will be
different on both sides.

What we have to do is as follows:

Switch the application from SY2 to SY1 so that all applications are running against
SY1. This will ensure that no more updates will occur on TAB1 on SY2. Let's call this
point in time timestamp2.

Appendix

[219]

Find the timestamp of when the Q subscription became inactive. Let's call this point
in time timestamp1.

We then need to get all the operations that occurred against TAB1 on SYS2 between
timestamp1 and timestamp2. We can use the log analysis function of the IBM
Recovery Expert product to achieve this.

We can then replay these transactions against TAB1 on SY1 so that this table will now
have a complete set of records.

Once TAB1 on SY1 contains a complete set of records, then we can reactivate the Q
subscription and perform a full refresh of TAB1 on SY2.

When the full refresh has completed, we can switch the applications we moved from
SY2 earlier back to SY2.

This recovery process will only work if we can perform the log analysis
part. If we do not have a log analysis product, then this type of setup is
best avoided.

Summary
In this book, we started by looking at the tools available to set up Q replication, and
then moved on to look at the pre-setup evaluation that you need to do to ensure that
the replication solution is the appropriate one. We covered 12 scenarios ranging from
the simplest unidirectional replication to P2P four-way, also covering Data Event
Publishing and using a stored procedure to transform data. We have given you
all the commands you need to set up any of these scenarios. We looked at conflict
detection and gave some worked through examples. We also looked at the important
example of having an active/active setup and that we need some sort of log analysis
tool before attempting such a setup.

