
Web Frameworks for Python
Geospatial Development

In this chapter, we will examine various options for developing web-based
geospatial applications. We will also explore a number of important concepts
used by web applications, and geospatial web applications in particular, as well
as studying some of the important open protocols used by these applications
and a number of available tools which you can use to implement your own
web-based geospatial systems.

In particular, we will be:

•	 Examining the architecture used by web applications
•	 Learning about web application stacks
•	 Exploring the concept of a full stack web application framework
•	 Learning about web services
•	 Learning how map rendering can be implemented as a standalone

web service
•	 Learning how tile caching can be used to improve performance
•	 Learning how web servers act as a frontend to a web application
•	 Exploring how JavaScript user interface libraries can enhance a web

application's user interface
•	 Learning how slippy maps can be created using an application stack
•	 Examining the web frameworks available for developing geospatial

applications using Python
•	 Learning about some of the important open protocols for working

with geospatial data within a web application
•	 Exploring some of the major tools and frameworks available for

building your own geospatial web applications

Web Frameworks for Python Geospatial Development

[2]

Web application concepts
In this section we will examine a number of important concepts related to
web-based	application	development	in	general,	as	well	as	concepts	specific	
to developing geospatial applications that are accessed via a web server.

Web application architecture
There are many ways you can approach the development of a web-based application.
You can write your own code, for example as a series of CGI scripts, or you can use
one of the many web application frameworks which are available. In this section,
we will look at the different ways web applications can be structured so that the
different parts work together to implement the application's functionality.

A bare bones approach
In Chapter 7, Working with Spatial Data, we created a simple web application named
DISTAL. This web application was built using CGI scripts to provide distance-based
identification	of	towns	and	other	features.	DISTAL	is	a	good	example	of	a	"bare	
bones"	approach	to	web	application	development,	using	nothing	more	than	a	web	
server, a database, and a collection of CGI scripts. The following diagram describes
this approach:

Bonus Chapter

[3]

The advantage of this approach is simplicity: you don't need any special tools or
knowledge to write a web application in this way. The disadvantage is that you
have to do all the low-level coding by hand. It's a very tedious and slow way of
building a web application, especially a complex one with lots of features.

Web application stacks
To simplify the job of building web-based applications, you generally make use of
existing tools that allow you to write your application at a higher level. For example,
you might choose to implement a complex web application in the following way:

Web Frameworks for Python Geospatial Development

[4]

This stack of tools works together to implement your application: at the lowest level
you have a data tier which deals with the storage of data. In this case, the application
uses MySQL for the database and SQLAlchemy as an object-relational mapper to
provide an object-oriented interface to this database. The application tier contains the
application's business logic, as well as various libraries to simplify the job of building a
stateful and complex web application. Finally, the presentation tier deals with the user
interface, serving web pages to the users, mapping incoming URLs to the appropriate
calls to your business logic, and using a sophisticated JavaScript library to build
complex user interfaces within the user's web browser.

Different terms are sometimes used for these three tiers. For
example, the data tier is sometimes called the data access
layer, and the application tier is sometimes called the
business logic layer. The concepts are the same, however.

Don't be too concerned about the details of this particular application's architecture, the
main	thing	to	realize	is	that	there	is	a	"stack"	of	tools	all	working	together,	where	each	
tool makes use of the tools below it. Also, notice the complexity of this system: this
application depends on a lot of different tools and libraries. Developing, deploying,
and upgrading an application such as this can be challenging because it has so many
different parts.

Web application frameworks
To avoid the complexity of mixing and matching so many different libraries, web
developers have created various frameworks which combine tools to provide a
complete web development system. Instead of having to select, install, and deploy
ten different libraries, you can simply choose a complete framework that brings a
known good set of libraries together, and adds its own logic to provide a complete
"batteries	included"	web	development	experience.	Most	of	these	toolkits	provide	
you with built-in logic to handle tasks such as:

•	 Defining	and	migrating	your	database	schema
•	 Keeping track of user sessions and handling user authentication
•	 Building sophisticated user interfaces, often using AJAX to handle complex

widgets within the user's browser

Bonus Chapter

[5]

•	 Automatically allowing users to create, read, update, and delete records in
the database (the so-called CRUD interface)

•	 Simplifying the creation of database-driven applications through standard
templates and recipes

There is a lot more to these frameworks, but the important thing to remember is
that they aim to provide a full stack of features which allow developers to quickly
implement the most common aspects of a web application with a minimum of fuss.
They aim to provide rapid application development (RAD) for web-based systems.

There are a number of Python-based web application frameworks available,
including TurboGears, Django, Zope, Pyramid, and Web2py. Some of these
frameworks also include extensions for developing geospatial web applications.

Web services
A web service is a piece of software that has an application programming interface
(API) that is accessed via the HTTP protocol. Web services implement behind-the-
scenes functionality used by other systems; they don't generally have an interface
that allows end users to access them directly.

Web services are accessed via a URL; other parts of the system send a request to this
URL and receive back a response, often in the form of XML or JSON encoded data,
which is then used for further processing.

Web Frameworks for Python Geospatial Development

[6]

Types of Web Services
There are three main types of web services you are likely to
encounter: RESTful web services, which use parts of the URL itself
to tell the web service what to do, query string-based web services,
and big web services which typically use the SOAP protocol to
communicate with the outside world.
REpresentational State Transfer (REST) is a protocol that uses
sub-paths	within	the	URL	to	define	the	request	to	be	made.	
For example, a web service might use the following URL to
return information about a customer:
http://myserver.com/webservice/customer/123

In this example, customer	defines	what	type	of	information	you	
want, and 123 is the internal ID of the desired customer. RESTful
web services are very easy to implement and use, and are becoming
increasingly popular with web application developers.
The second major type of web service makes use of query strings.
For example, you might update a customer's details using the
following URL:
http://myserver.com/webservice/update_
customer?id=123&name=Tom

Finally, a big web service has just one URL as the entry point for the
entire web service. A request is sent to this URL as an XML-format
message, and the response is sent back, also as an XML-formatted
message. The SOAP protocol is often used to describe the message
format and how the web service should behave. Big web services are
popular in large commercial systems, despite being more complex
than their RESTful equivalent.

Let's take a look at a simple but useful web service. This CGI script, called
greatCircleDistance.py, calculates and returns the great-circle distance between
two coordinates on the Earth's surface. Here is the full source code for this web service:

#!/usr/bin/python
import cgi
import pyproj
form = cgi.FieldStorage()
lat1 = float(form['lat1'].value)
long1 = float(form['long1'].value)
lat2 = float(form['lat2'].value)
long2 = float(form['long2'].value)
geod = pyproj.Geod(ellps="WGS84")

Bonus Chapter

[7]

angle1,angle2,distance = geod.inv(long1, lat1, long2, lat2)
print 'Content-Type: text/plain'
print
print distance

This web service uses query parameters to supply the two coordinates, and
the resulting distance (in meters) is returned as the body of the HTTP response.
Since the returned value is a single number, there is no need to encode the results
using XML or JSON; instead, the distance is returned as plain text.

If you want to run this CGI script, create the following program and name it
webServer.py:

 import BaseHTTPServer
 import CGIHTTPServer
 address = ('', 8000)
 handler = CGIHTTPServer.CGIHTTPRequestHandler
 server = BaseHTTPServer.HTTPServer(address, handler)
 server.serve_forever()

Then create a sub-directory named cgi-bin in the same directory as your
webServer.py program, and place your script in that directory. When you run
this program, you will be able to access your CGI script at the following URL:

http://127.0.0.1:8000/cgi-bin/greatCircleDistance.py

Let's now look at a simple Python program, which calls this web service:

import urllib
URL = "http://127.0.0.1:8000/cgi-bin/greatCircleDistance.py"
params = urllib.urlencode({'lat1' : 53.478948, # Manchester.
 'long1' : -2.246017,
 'lat2' : 53.411142, # Liverpool.
 'long2' : -2.977638})
f = urllib.urlopen(URL, params)
response = f.read()
f.close()
print response

Web Frameworks for Python Geospatial Development

[8]

Running this program tells us the distance in meters between these two coordinates,
which happen to be the locations of Manchester and Liverpool in England:

% python callWebService.py
49194.46315

While this might not seem very exciting, web services are an extremely important
part of web-based development. When developing your own web-based geospatial
applications, you may well make use of existing web services, and potentially
implement your own web services as part of your web application development.

Map rendering
We saw in Chapter 8, Using Python and Mapnik to Generate Maps, how Mapnik can be
used to generate good looking maps. Within the context of a web application, map
rendering is usually performed by a web service which takes a request and returns
the	rendered	map	image	file.	For	example,	your	application	might	include	a	map	
renderer at the relative URL /render which accepts the following query parameters:

•	 minX, maxX, minY, maxY: The minimum and maximum latitude and longitude
for the area to include on the map.

•	 width, height: The pixel width and height for the generated map image.
•	 layers: A comma-separated list of layers which are to be included on the

map.	The	available	predefined	layers	are:	coastline,	forest,	waterways,	
urban, and street.

•	 format: The desired image format. Available formats are: png, jpeg, gif.

This hypothetical /render web service would return the rendered map image back
to the caller. Once this has been set up, the web service would act as a black box
providing map images upon request for other parts of your web application.

As	an	alternative	to	hosting	and	configuring	your	own	map	renderer,	you	can	choose	
to use an openly available external renderer. For example, OpenStreetMap provides
a freely-available map renderer for OpenStreetMap data at:

http://staticmap.openstreetmap.de

Bonus Chapter

[9]

Tile caching
Because creating an image out of raw map data is a time and processor intensive
operation, your entire web application can be overloaded if you get too many requests
at any one time. As we saw with the DISTAL application in Chapter 7, Working with
Spatial Data, there is a lot you can do to improve the speed of the map-generation
process, but there are still limits on how many maps your application can render in
a given time period.

Because map data is generally quite static, you can get a huge improvement in your
application's performance by caching the generated images. This is generally done
by dividing the world up into tiles, rendering tile images as required, and then
stitching the tiles together to produce the desired map:

Web Frameworks for Python Geospatial Development

[10]

Tile caches work in exactly the same way as any other cache:

•	 When a tile is requested, the tile cache checks to see if it contains a copy
of the rendered tile. If so, the cached copy is returned right away.

•	 Otherwise, the map rendering service is called to generate the tile, and
the newly-rendered tile is added to the cache before returning it back to
the caller.

•	 As the cache grows too big, tiles which haven't been requested for a long
time are removed to make room for new tiles.

Of course, tile caching will only work if the underlying map data doesn't change.
As we saw when building the DISTAL application, you can't use a tile cache where
the rendered image varies from one request to the next.

One interesting use of a tile cache is to combine it with map overlays to improve
performance even when the map data does change. Because the outlines of countries
and other physical features on a map don't change, it is possible to use a map generator
with a tile cache to generate the base map onto which changing features are then
drawn as an overlay:

Bonus Chapter

[11]

There are two possible ways of combining a base map with an overlay such as this.
One way is to use Mapnik to combine the base map with the overlay, reading the
base map image using a RasterDataSource, and displaying it via a RasterSymbolizer,
and then make the combined map tiles available via a web service.

The second possibility is to combine the base map and the overlay directly within
the	web	browser,	using	tools	such	as	OpenLayers	or	Leaflet,	which	we	will	examine	
later in this chapter. This approach has the advantage of reducing the amount of
map-rendering that you have to do on the server, at the disadvantage of increasing
the amount of work that must be done at the browser level.

Web servers
In many ways a web server is the least interesting part of a web application: the web
server listens for incoming HTTP requests from web browsers and returns either
static content or the dynamic output of a program in response to these requests:

There are many different types of web servers, ranging from the pure-python
SimpleHTTPServer included in the Python standard library, which we've used
to serve the CGI scripts we've written, through more fully-featured servers such
as CherryPy, Gunicorn, and of course the most popular industrial-strength web
server of them all: Apache. Other more specialized web servers such as Nginx
are also gaining in popularity.

Web Frameworks for Python Geospatial Development

[12]

One of the main consequences of your choice of web server is how fast your
application will run. Obviously, a pure Python web server will be slower than
a compiled high-performance server such as Apache. But there are more subtle
differences as well. For example, even if you're using Apache, running a Python-
based CGI script will cause the entire Python interpreter to be started up every
time a request is received.

These types of issues make it extremely important that you design and implement
your web application correctly. A slow web server doesn't just affect your application's
responsiveness: if your server runs slowly, it won't take many requests to overload
the server.

Another consequence of your choice of web server is how your application's code
interacts with the end user. The HTTP protocol itself is stateless—that is, each
incoming request is completely separate, and a web page handler has no way of
knowing what the user has done previously unless you explicitly code your pages
in such a way that the application's state is passed from one request to the next
(for	example,	using	hidden	HTML	form	fields).

Because some web servers run your Python code only when a request comes in,
there is often no way of having a long-running process sitting in the background
that keeps track of the user's state or performs other capabilities for your web page
handlers. For example, an in-memory cache might be used to improve performance,
but you can't easily use such a cache with CGI scripts as the entire interpreter is
restarted for every incoming HTTP request.

One of the big advantages of using a web application framework is that you don't
need to worry about these sorts of issues: in many cases, the web framework itself will
include a simple web server you can use for development, and provides a standard
way of using industry-standard web servers when you deploy your application. The
challenges of performance, keeping track of the user's state, and using long-running
processes will all be solved for you by the web framework. It is, however, worthwhile
to understand some of the issues involved in the choice of a web server, and to know
where	the	web	server	fits	within	the	overall	web	application.	This	will	help	you	to	
understand	what	your	web	framework	is	doing,	and	how	to	configure	and	deploy	it	
to achieve the best possible performance.

Bonus Chapter

[13]

User interface libraries
While it is easy to build a simple web-based interface in HTML, users are increasingly
expecting web applications to compete with desktop applications in terms of their user
interface. Selecting objects by clicking on them, drawing images with the mouse, and
dragging-and-dropping are no longer actions restricted to desktop applications.

JavaScript programs running within the web browser allow you to dynamically
update	the	contents	of	the	page,	rather	than	having	a	fixed	page	that	has	to	be	reloaded	
every time something changes. These dynamic pages are often complemented by the
use of AJAX (Asynchronous JavaScript and XML) to download data as required from
the server. Working together, JavaScript and AJAX can be used to build sophisticated
web applications that behave in ways impossible to achieve with static web pages.

While JavaScript is ubiquitous, it is also hard to program in. The various web
browsers in which the JavaScript code can run all have their own quirks and
limitations, making it hard to write code that runs the same way on every browser.
JavaScript code is also very low level, requiring detailed manipulation of the web
page contents to achieve a given effect. For example, implementing a pop-up menu
requires the creation of a <DIV> element that contains the menu, formatting it
appropriately (typically using CSS), and making it initially invisible. When the user
clicks on the page, the pop-up menu should be shown by making the associated
<div> element visible. You then need to respond to the user mousing over each item
in the menu by visually highlighting that item and un-highlighting the previously
highlighted item. Then when the user clicks, you have to hide the menu again before
responding to the user's action.

All this detailed low-level coding can take weeks to get right, especially when
dealing with multiple types of browsers and different browser versions. Since all
you want to do in this case is have a pop-up menu that allows the user to choose an
action, it just isn't worth doing all this low-level work yourself. Instead, you would
normally make use of one of the available user interface libraries to do all the hard
work for you.

These user interface libraries are written in JavaScript, and you typically add them
to	your	website	by	making	the	JavaScript	library	file(s)	available	for	download,	and	
then adding the following line to your HTML page to import the JavaScript library:

<script type="text/javascript" src="library.js">

Web Frameworks for Python Geospatial Development

[14]

If you are writing your own web application from scratch, you would then make
calls to the library to implement the user interface for your application. However,
many of the web application frameworks that include a user interface library will
write the necessary code for you, making even this step unnecessary.

There are many different types of user interface libraries which you can make use
of. As well as general UI libraries such as JQuery UI and Twitter Bootstrap which
provide	a	desktop-like	experience,	there	are	other	libraries	specifically	designed	
for implementing geospatial web applications. We will explore some of these later
in this chapter.

The slippy map stack
The slippy map is a concept popularized by Google maps: a zoomable map where
the user can click-and-drag to scroll around and double-click to zoom in. Here is
an example of a Google maps slippy map showing a portion of Europe:

Image copyright Google; map data copyright Europa Technologies, PPWK, Tele Atlas

Slippy maps have become extremely popular, and much of the work done
on geospatial web application development has been focused on creating
and working with slippy maps.

Bonus Chapter

[15]

The slippy map experience is typically implemented using a custom software stack
with the following components:

Starting	from	the	bottom,	the	raw	map	data	is	typically	stored	in	a	shapefile	or	
database. This is then rendered using a tool such as Mapnik, and a tile cache is used
to speed up repeated access to the same map images. A user-interface library such as
OpenLayers is then used to display the map in the user's web browser, and to respond
when the user clicks on the map. Finally, a web server is used to allow web browsers
to access and interact with the slippy map.

Web Frameworks for Python Geospatial Development

[16]

The geospatial web application stack
The slippy map stack is intended to display a slippy map within a web page,
allowing the user to view a map but not generally to make any changes. A more
comprehensive solution allows the user to not only view maps, but also to make
changes to geospatial data from within the web application itself and perform
other functions such as analyzing data and performing spatial queries. A complete
geospatial web application stack would consist of a web application framework
with an integrated slippy map stack and built-in tools for editing, querying, and
analyzing geospatial data.

In many ways, the geospatial web application stack is the epitomé of geospatial
web development: it allows for rapid development of geospatial applications with
a minimum of coding and using existing libraries to do almost all the hard work.
While you still need to understand how the web application framework (and
its geospatial extensions) operate, and there are bugs and technical issues to be
considered, these frameworks can save you a tremendous amount of time and
effort	compared	with	a	"roll	your	own"	solution.

Protocols
Because web-based applications are generally broken into multiple components,
the way these components communicate becomes extremely important. It's quite
likely that your web application will use off-the-shelf components or rely on
existing components running on a remote server. In these cases, the protocols
used to communicate between the various components are crucial to allow these
various components to work together.

In terms of geospatial web applications, a number of standard protocols have been
developed to allow different components to communicate. For example, the Web
Map Service (WMS) protocol provides a standard way for a web service to receive
a map-generation request and return the map image back to the caller.

In this section, we will examine some of the major protocols relating to geospatial
web applications. While there are some tools that choose not to use these protocols,
they are still frequently used in geospatial development, and so it is worthwhile
becoming at least passingly familiar with them.

Bonus Chapter

[17]

The Web Map Service protocol
The Web Map Service protocol defines	the	interface	to	a	web	service	that	creates	map	
images upon request:

At a minimum, the Web Map Service needs to implement the following two
HTTP requests:

•	 GetCapabilities
This request returns information about the Web Map Service itself, in the
form of an XML document describing the web service, including:

 ° Which operations are supported by the web service
 ° The maximum width and height of the generated map, in pixels
 ° The maximum number of layers which can be included in the map
 ° A list of the available map layers
 ° A list of the various visual styles which can be applied to the

map's features
 ° A latitude/longitude bounding box defining the area of the Earth

the Web Map Service can generate maps for
 ° Which Coordinate Reference System is used by the map's data
 ° The range of scale factors at which the map can be generated
 ° A URL linking to the underlying map data

Web Frameworks for Python Geospatial Development

[18]

•	 GetMap
This request generates and returns an actual map image based on the
supplied parameters. The supplied parameters include:

 ° A comma-separated list of the layers to include in the map
 ° A comma-separated list of styles to apply to the map
 ° A code indicating which Coordinate Reference System is used

by the supplied bounding box parameters. For example, the code
CRS:84 indicates that the coordinates are longitude and latitude
values using the WGS 84 datum

 ° The bounding box defining the area of the Earth to be covered
by the map

 ° The width and height of the generated map image, in pixels
 ° The image format to use for the generated map

The GetMap request will return	the	generated	map	as	an	image	file	of	
the requested format. For example, if the request parameters included
FORMAT=JPEG, the returned data would be a JPEG-format image.

The Web Map Service may also optionally implement the following request:

•	 GetFeatureInfo
Returns more detailed information about the feature or features at a given
coordinate within a rendered map image. The parameters used by this
request include:

 ° The map-generation parameters used to create a map image
 ° The pixel coordinate of a desired point in the rendered map image

Upon completion, this request returns information about the features or
features at or near the given position in the rendered map image. The results
are usually in XML format. Note that the exact information returned by a
GetFeatureInfo	request	is	not	specified	by	the	WMS	specification.

For	more	information	about	the	WMS	protocol,	you	can	find	the	complete	
specification	on	the	open geospatial consortium's web site:

http://www.opengeospatial.org/standards/wms

Bonus Chapter

[19]

WMS-C
Because the WMS protocol generates arbitrary map images, it doesn't produce
map tiles which can be easily cached. To get around this limitation, a set of
recommendations were made to limit the way in which WMS operates, to make it
more suitable for serving tiled images. This recommendation, known as WMS-C or
the WMS Tiling Client Recommendation, ensures that the generated map images
consist	of	fixed-size	tiles.	It	also	suggests	extensions	to	the	WMS	protocol	to	make	
it clear that the rendered map images are map tiles.

More details about the WMS-C protocol can be found at:

http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation

The Web Feature Service (WFS) protocol
The WFS protocol	defines	a	web	service	that	allows	other	parts of a web application
to query and manipulate geospatial features independently of how those features
are stored:

Web Frameworks for Python Geospatial Development

[20]

A web feature service represents geospatial features using Geography Markup
Language (GML), which is an XML schema for storing and representing geographical
information. GML is an international standard, allowing features to be represented and
stored in a platform-agnostic way.

At a minimum, a web feature service needs to support the following requests, which
allow client systems to access the WFS and retrieve features:

•	 GetCapabilities

This request returns information about the web feature service itself,
in the form of an XML document which describes:

 ° The operations supported by the web service
 ° Which types of features can be stored and retrieved by the web service
 ° Which operations are supported by each type of feature

•	 DescribeFeatureType

This request returns an XML document describing the structure of one
or more types of features. This provides information about the attributes
stored for each feature, as well as the way in which the feature itself is
represented in the datastore.

•	 GetFeature

This request queries the web feature service, returning features which match
certain criteria. The caller can request which properties to retrieve and a
maximum number of matching features to return, as well as both spatial and
non-spatial query parameters.

The web feature service may also choose to support client systems adding, updating,
and deleting features. This can be done in one of two ways: by allowing the client to
lock one or more features before making a series of changes and then unlocking the
features again, or simply by making the updates one at a time. The locking approach
ensures that multiple processes don't update the same feature at the same time,
although not all web feature service support locking.

The following requests support locking and non-locking changes to the datastore:

•	 LockFeature

Lock one or more features so that other processes cannot make any changes
to those features.

Bonus Chapter

[21]

•	 GetFeatureWithLock

Retrieve one or more features, and immediately lock the retrieved features.

•	 Transaction

This request is used to add, update and delete features. It also allows
previously-locked features to be unlocked, allowing other processes to
make changes to those features.

Finally, the web feature service can optionally support external linking, where
features (possibly stored within different web feature service) can be linked together.
This is done through supporting the retrieval of nested features within the GetFeature
request, and the separate GetGmlObject request which returns a given feature
referred to by an XLink ID.

Web feature service are intended to abstract the storage and retrieval away from other
parts of a web application, allowing different datastores to be used, and to allow
information stored in separate places (possibly on separate servers) to be seamlessly
combined. Unfortunately, the WFS protocol is quite complicated, relying heavily
on complex XML schemas, which makes accessing and using a web feature service
somewhat challenging. Despite this, the open and scalable nature of the WFS protocol
does make it worthwhile. Depending on your requirements, you may wish to make
use of this protocol in your applications, especially if you are trying to access or
manipulate data stored externally.

More	information	about	web	feature	service,	including	a	complete	specification,	
can be found at:

http://www.opengeospatial.org/standards/wfs

The TMS (Tile Map Service) protocol
The TMS protocol	defines	the	interface	to	a	web	service	which	returns	map	tile	
images upon request. The TMS protocol is similar to WMS, except that it is simpler
and more oriented towards the storage and retrieval of map tiles rather than
arbitrarily-specified	complete	maps.

The Open Geospatial Consortium has produced a new standard
called WMTS (Web Map Tile Service) that theoretically
supercedes the TMS protocol. However, TMS is simpler and is
supported by all major libraries, unlike WMTS, so in this book
we will concentrate on TMS rather than WMTS.

Web Frameworks for Python Geospatial Development

[22]

The TMS protocol uses RESTful principles, which means that the URL used to access
the web service includes all of the information needed to complete a request. Unlike
WMS, there is no need to create and submit complex XML documents to retrieve
a map tile—all of the information is contained within the URL itself. This has the
advantage of allowing standard HTTP caching to be used for map tiles.

Within the TMS protocol, a Tile Map Service is a mechanism for providing access
to rendered map images at a given set of scale factors and using a predetermined
set of spatial reference systems.

A single TMS server can host multiple Tile Map Services:

This is typically used to have different versions of a Tile Map Service available,
so that new versions of the Tile Map Service can be implemented without breaking
clients that depend on features in an older version.

Each	Tile	Map	Service	within	a	TMS	server	is	identified	by	a	URL	that	is	used	to	
access that particular service. For example, if a TMS server is running at http://
tms.myserver.com, Version 1.2 of the Tile Map Service running on that server would
generally reside at the sub-URL http://tms.myserver.com/1.2/. Accessing the
top-level URL (that is, http://tms.myserver.com) returns a list of all the Tile Map
Services available on that server:

<?xml version="1.0" encoding="UTF-8"/>
<Services>
 <TileMapService title="MyServer TMS" version="1.0"
 href="http://tms.myserver.com/1.0/"/>
 <TileMapService title="MyServer TMS" version="1.1"
 href="http://tms.myserver.com/1.1/"/>
 <TileMapService title="MyServer TMS" version="1.2"
 href="http://tms.myserver.com/1.2/"/>
</Services>

Bonus Chapter

[23]

Each Tile Map Service provides access to one or more Tile Maps:

A Tile Map is a complete map of all or part of the Earth, displaying particular sets
of features or styled in a particular way. The previous examples, of a worldwide
base map, a contour map, and a land-use map, show how different Tile Maps might
contain different sorts of map data or cover different areas of the Earth's surface.
Different Tile Maps may also be used to make maps available in different image
formats, or to provide maps in different spatial reference systems.

If a client system accesses the URL for a particular Tile Map Service, the server
will return more detailed information about that service, including a list of the
Tile Maps available within that service:

<?xml version="1.0" encoding="UTF-8"/>
<TileMapService version="1.2" services="http://tms.myserver.com">
 <Title>MyServer TMS</Title>
 <Abstract>TMS Service for the myserver.com server</Abstract>
 <TileMaps>
 <TileMap title="World Base Map"srs="EPSG:4326"profile="none"
 href="http://tms.myserver.com/1.2/baseMap"/>
 <TileMap title="USA Contour Map"srs="EPSG:4326"rofile="none"
 href="http://tms.myserver.com/1.2/usaContours"/>
 <TileMap title="Australian Land-Use Map"srs="EPSG:4326"
 profile="none"href="http://tms.myserver.com/1.2/ausLandUse"/>
 </TileMap>
 </TileMaps>
</TileMapService>

Web Frameworks for Python Geospatial Development

[24]

Client systems accessing rendered maps via a TMS Server will generally want to
be able to display that map at various resolutions. For example, a world base map
might initially be displayed as a complete map of the world, and the user can zoom
in to see a more detailed view of a desired area:

This zooming-in process is done through the use of appropriate scale factors. Each
Tile Map consists of a number of Tile Sets, where each Tile Set depicts the map at
a	given	scale	factor.	For	example,	the	first	image	in	the	previous	illustration	was	
drawn at a scale factor of approximately 1:100,000,000, the second at a scale factor
of 1:10,000,000, the third at a scale factor of 1:1,000,000, and the last at a scale factor
of 1:100,000. Thus, there would be four Tile Sets within this Tile Map, one for each
of the scale factors.

If a client system accesses the URL for a given Tile Map, the server will return
information about that map, including a list of the available Tile Sets:

<?xml version="1.0" encoding="UTF-8">
<TileMap version="1.2"
tilemapservice="http://tms.myserver.com/1.2">
 <Title>World Base Map</Title>
 <Abstract>Base map of the entire world</Abstract>
 <SRS>ESPG:4326</SRS>
 <BoundingBox minx="-180" miny="-90" maxx="180" maxy="90"/>
 <Origin x="-180" y="-90"/>

Bonus Chapter

[25]

 <TileFormat width="256"height="256"mime-type="image/png"
 extension="png"/>
 <TileSets profile="none">
 <TileSet href="http://tms.myserver.com/1.2/basemap/0"
 units-per-pixel="0.703125"order="0"/>
 <TileSet href="http://tms.myserver.com/1.2/basemap/1"
 units-per-pixel="0.3515625"order="1"/>
 <TileSet href="http://tms.myserver.com/1.2/basemap/2"
 units-per-pixel="0.17578125"order="2"/>
 <TileSet href="http://tms.myserver.com/1.2/basemap/3"
 units-per-pixel="0.08789063"order="3"/>
 </TileSets>
</TileMap>

Notice how each Tile Set has its own unique URL. This URL will be used to retrieve
the individual tiles within the Tile Set. Each tile is given an x and y coordinate value
indicating its position within the overall map. For example, using the previously
mentioned Tile Map covering the entire world, the third Tile Set would consist of
32 tiles arranged as follows:

This	arrangement	of	tiles	is	defined	by	the	following	information	taken	from	the	
Tile Map and the selected Tile Set:

•	 The Tile Map uses the ESPG:4326 spatial reference system, which equates to
longitude/latitude coordinates based on the WGS84 datum. This means that
the map data is using latitude/longitude coordinate values, with longitude
values increasing from left to right, and latitude values increasing from
bottom to top.

Web Frameworks for Python Geospatial Development

[26]

•	 The map's bounds range from -180 to +180 in the x (longitude) direction,
and from -90 to +90 in the y (latitude) direction.

•	 The map's origin is at (-180,-90)—that is, the bottom-left corner of the map.
•	 Each tile in the Tile Map is 256 pixels wide and 256 pixels high.
•	 This Tile Set has a units-per-pixel value of 0.17578125.

Multiplying the units-per-pixel value by the tile's size, we can see that each tile
covers 0.17578125 * 256 = 45 degrees of latitude and longitude. Since the map
covers the entire Earth, this yields eight tiles across and four tiles high, with
the origin in the bottom-left corner.

Once the client software has decided on a particular Tile Set to use, and has
calculated the x and y coordinates for the desired tile, retrieving that tile's image
is a simple matter of concatenating the Tile Set's URL, the x and y coordinates,
and	the	image	file	suffix:

url = tileSetURL + "/" + x + "/" + y + "." + imgFormat

For example, to retrieve the tile at coordinate (2, 3) from Tile Set number 1,
you would use the following URL:

http://tms.myserver.com/1.2/basemap/1/2/3.png

Notice how this URL (and indeed, every URL used by the TMS protocol) looks as
if	it	is	simply	retrieving	a	file	from	the	server.	Behind	the	scenes,	the	TMS	server	
may indeed be running a complex set of map-generation and map-caching code to
generate these tiles on demand—but the entire TMS server could just as easily be
defined	by	a	series	of	hardwired	XML	files	and	a	number	of	directories	containing	
pre-generated	image	files.

This notion of a Static Tile Map Server is a deliberate design feature of the
TMS protocol. If you don't need to generate too many map tiles, or if you have a
particularly large hard disk, you can pre-generate all the tile images and create a
static	TMS	server	by	creating	a	few	XML	files	and	serving	the	whole	thing	behind	
a standard web server such as Apache.

While you might not implement your own dynamic TMS Server from scratch, you
may well wish to make use of TMS servers in your own web applications, either
by creating a Static Tile Map Server, or by using an existing software library that
implements the TMS protocol such as the open-source TileCache server. TileCache
will be discussed in the next section of this chapter.

Bonus Chapter

[27]

The	full	specification	for	the	TMS	protocol can be found at:

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

Tile-Numbering Issues with TMS
There is a subtle difference in the way the TMS protocol numbers
map tiles compared with many other mapping systems. With TMS,
the smallest Y value represents the bottom of the map, and the
largest Y value represents the top. This is the opposite of many other
tile-serving systems, including Google Maps and OpenStreetMap,
where the lowest Y value is at the top of the map. This can lead
to problems if your server outputs tiles in the Google Maps or
OpenStreetMap style but your client is assuming tiles numbered
according to the TMS protocol, or vice versa. If your tiles are
appearing	in	the	wrong	order,	you	may	need	to	flip	the	Y	axis.

Tools
When discussing tools for developing geospatial web applications, it is worth
remembering that all of the libraries and toolkits we have discussed in earlier
chapters (SpatiaLite, MySQL, PostGIS, Mapnik, OGR, GDAL, Proj, Shapely,
and so on) can also be used for web applications. In this section, we will add
to this collection by examining some of the major Python libraries available for
implementing tile caching and slippy maps. We will also look at some of the
web application frameworks which support geospatial development.

Tile Caching
While there are several tools for implementing tile caching within a Python geospatial
web application, many of them have not been updated for some time. Let's take a
closer look at one that is in active development, TileStache, as well as the venerable
TileLite, a lightweight but still-useful tile server written in Python.

TileStache
TileStache (http://tilestache.org) is a powerful	and	flexible	Python-based	map	
server that can act as a tile cache and much more. It was written as the successor to
the earlier TileCache WMS server (http://tilecache.org) which still works but
is no longer being developed.

Web Frameworks for Python Geospatial Development

[28]

TileStache can be run in four different ways:

1. As a WSGI application, either using the built-in werkzeug server,
or as part of an external WSGI server such as Gunicorn.

2. As a CGI script.
3. As a mod_python module running within the Apache web server.
4. TileStache can also be called directly from your Python program.

TileStache can render map images using Mapnik, it can forward (and cache)
map data from other WMS providers, and it can read geospatial data directly
from	shapefiles,	spatial	databases	and	GeoJSON	data	sources,	among	others.

As the tiles are rendered, they can be cached in a variety of ways, including
storing	them	in	files	on	the	local	disk,	using	the	memory-based	memcached	
daemon, and caching tiles on cloud services such as Amazon S3.

TileStache uses a URL scheme similar to the TMS protocol:

http://myserver.com/tilestache/[layer]/[zoom]/[x]/[y].[format]

where layer is the name of the desired layer, zoom is the desired zoom level, x and y
are the coordinate for the desired tile, and format is the desired output format. Note
that the returned data can either be a rendered image (in PNG or JPEG format), or
raw geospatial data (in JSON format) that can then be displayed directly by the web
browser, for example, by using a vector layer within the OpenLayers library.

TileStache includes a built-in preview function that displays a slippy map in a web
browser, making it easy to test and see how your map tiles are being rendered.

Configuration	is	done	via	JSON-format	files,	giving	the	developer	a	lot	of	flexibility	
in how TileStache works and what information it displays.

TileStashe takes a pragmatic approach to map tiling. Rather than conform to a
standard, it provides a quick and powerful tile-caching system along with a simple
URL scheme that allows these tiles to be retrieved by client software as required.
For example, the OpenLayers library supports an XYZ layer which can retrieve tiles
from TileStache.

Bonus Chapter

[29]

TileLite
As the name suggests, TileLite (http://bitbucket.org/springmeyer/tilelite) is
a lightweight tile server, written in Python. It serves tiles rendered using Mapnik, and
uses	WSGI	for	interacting	with	a	web	server.	TileLite	is	easy	to	install	and	configure,	
and comes with its own server that you can use for development purposes. While it
has not been updated in some time, it is still a useful lightweight tile server.

For deployment in a high-performance environment, you can combine TileLite
with the mod_wsgi module to use TileLite within Apache. Because TileLite is
a long-running process, it has a single Mapnik Map object that is held in memory
to quickly produce map tiles on demand.

TileLite works with Mapnik, mod_wsgi, and Apache in the following way:

TileLite makes the map tiles available using the following URL scheme:

http://myserver.com/tileserver/[zoom]/[x]/[y].png

Because it is written in pure Python, it is easy to explore the TileLite source code
and see how it works. It is fast and simple, and may well be suited to providing
the tile caching needs of your geospatial web application.

Web Frameworks for Python Geospatial Development

[30]

User interface libraries
JavaScript code running on the user's web browser, in conjunction with AJAX
technology, has made it possible to include complex user interfaces previously only
seen on desktop-based GUI systems. Because of the complexity of the JavaScript code
needed to achieve commonly-used parts of a user interface, a number of large and
powerful UI libraries have been developed to simplify the task of building a complex
web interface. Twitter Bootstrap, script.aculo.us, JQuery-UI, and YUI are examples
of some of the more popular JavaScript user interface libraries.

It	is	easy	to	forget	that	geospatial	web	applications	are,	first	and	foremost,	ordinary	
web applications that also happen to work with geospatial data. Much of a geospatial
web application's functionality is rather mundane: providing a consistent look and
feel, implementing menus or toolbars to navigate between pages, user signup, login
and logout, entry of ordinary (non-geospatial) data, reporting, and so on. All of this
functionality can be handled by one of these general-purpose geospatial libraries,
and you are free to either choose one or more libraries of your liking, or make use
of the UI library built into whatever web application framework you have chosen
to use.

These general-purpose user interface libraries, and the process of using them to
implement non-geospatial functionality, has been covered by many other books
and web sites. We will not look at them in depth here. Instead, we will take a closer
look	at	two	of	the	UI	libraries	specifically	aimed	at	viewing	or	editing	geospatial	
data via a slippy map interface: the fully-featured OpenLayers, and the simpler
Leaflet	library.

OpenLayers
OpenLayers (http://openlayers.org) is a sophisticated JavaScript library for
building mapping applications. It includes a JavaScript API for building slippy maps,
combining data from multiple layers, and includes various widgets for manipulating
maps as well as viewing and editing vector-format data.

To	use	OpenLayers	in	your	web	application,	you	first	need	to	create	an	HTML	file	
to be loaded into the user's web browser, and write some JavaScript code which uses
the OpenLayers API to build the desired map. OpenLayers then builds your map and
allows the user to interact with it, loading map data from the various data source(s)
you	have	specified.	OpenLayers	can	read	from	a	variety	of	geospatial	data	sources,	
including TMS, WMS, and WFS servers. All these various parts work together to
produce the user interface for your web application in the following way:

Bonus Chapter

[31]

To use OpenLayers you have to be comfortable writing
JavaScript code. This is almost a necessity when creating your
own web applications. Fortunately, the OpenLayers API is
very high level, and makes map-creation relatively simple.

Here is an example HTML page that displays a slippy map using OpenLayers:

<html>
 <head>
 <script src="http://openlayers.org/api/OpenLayers.js">
 </script>
 <script type="text/javascript">
 function initMap() {
 var map = new OpenLayers.Map("map");
 var layer = new OpenLayers.Layer.WMS("Layer",
 "http://labs.metacarta.com/wms/vmap0",
 {layers: 'basic'});
 map.addLayer(layer);
 map.zoomToMaxExtent();
 }
 </script>
 </head>
 <body onload="initMap()">
 <div style="width:100%; height:100%" id="map"></div>
 </body>
</html>

Web Frameworks for Python Geospatial Development

[32]

As you can see, the map uses a block-level element, in this case a <div> element,
to hold the map. Initializing the map involves a short JavaScript function which
defines	the	map	object,	adds	a	layer,	and	prepares	the	map	for	display.

Internally, the OpenLayers API uses a Map object to represent the slippy map itself,
and one or more Layer objects which represent the map's data sources.

As with Mapnik layers, multiple OpenLayers layers can be laid on top of each other
to produce the overall map image, and layers can be shown or hidden depending on
the map's current scale factor.

There are two types of layers supported by OpenLayers: Base Layers and Overlay
Layers. Base layers sit behind the overlay layers, and are generally used to display
raster format data (images, generated map tiles, and so on). Overlay layers, on the
other hand, sit in front of the base layers and are generally used to display vector
format data, including points, lines, polygons, bounding boxes, text, markers, and
so on:

Bonus Chapter

[33]

Different Layer subclasses represent different types of data sources: OpenLayers.
Layer.TMS, OpenLayers.Layer.WMS, OpenLayers.Layer.Google, and so on. In
addition, the OpenLayers.Layer.Vector class represents vector-format data which
can be loaded from a variety of sources, and optionally edited by the user. To have
the vector layer read features from the server, you set up a Protocol object which
tells OpenLayers how to communicate with the server. The most common protocol
is HTTP, though several other protocols including WFS are also supported. The
Protocol object usually includes the URL used to access the server.

As well as setting the protocol, you also supply the format used to read and write
data. Supported formats include GML, GeoJSON, GeoRSS, OSM, and WKT, among
others. The Format	objects	also	support	on-the-fly	reprojection	of	vector	data	so	that	
data from different sources, using different map projections, can be combined onto
a single map.

In addition to the map itself, OpenLayers allows you to use various Control objects,
either embedded within the map or shown elsewhere on the web page. Control
objects include simple push-buttons, controls for panning and zooming the map,
controls which display the map's current scale, controls for showing and hiding
layers, and various controls for selecting, adding, and editing vector features. There
are also invisible controls which change the behavior of the map itself. For example,
the Navigation control allows the user to pan and zoom by clicking-and-dragging on
the map, and the ArgParser control tells OpenLayers to scan the URL's query string
during page load for arguments which adjust how the map is initially displayed.

OpenLayers is a very powerful tool for building geospatial web interfaces. Even if
you don't use it directly in your own code, many of the web application frameworks
which	support	geospatial	web	development	(including	TurboGears,	Mapfish,	and	
GeoDjango) use OpenLayers internally to display and edit map data.

Leaflet
Leaflet	(http://leafletjs.com) is another JavaScript library for including slippy
maps within a web application. It is a lean and simple library, and very easy to use.
Here,	for	example,	is	an	HTML	page	that	displays	a	map	using	Leaflet:

<html>
 <head>
 <title>Example Map</title>
 <link rel="stylesheet" href="http://cdn.leafletjs.com/
 leaflet-0.4.5/leaflet.css"/>
 <!--[if lte IE 8]>

Web Frameworks for Python Geospatial Development

[34]

 <link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet
 0.4.5/leaflet.ie.css" />
 <![endif]-->
 <script src="http://cdn.leafletjs.com/leaflet
0.4.5/leaflet.js"></script>
 <script type="text/javascript">
 function onLoad() {
 var map = L.map("map");
 map.setView([-38.139, 176.244], 13);
 var layer =
L.tileLayer("http://tile.openstreetmap.org/{z}/{x}/{y}.png");
 map.addLayer(layer);
 }
 </script>
 </head>
 <body onload="onLoad()">
 <div id="map" style="width:800px; height:600px">
 </div>
 </body>
</html>

Running this page results in the following slippy map being displayed:

Bonus Chapter

[35]

Leaflet	makes it easy to include multiple layers on a map (including overlaying
vector	data	on	top	of	a	base	map),	and	is	easy	to	configure	to	work	with	any	of	the	
standard protocols for accessing map tiles. You can also add markers and popups
to your maps, and various controls that respond to mouse clicks and other UI events.
As	well	as	being	lean	and	simple,	Leaflet	also	works	well	with	mobile	browsers,	
making it in many ways an ideal JavaScript library for working with slippy maps.

Web application frameworks
In this section, we will examine three of the major Python-based web application
frameworks that also support geospatial web application development.

All three of these frameworks are highly usable and in active development. While
we will select a particular framework to use in the latter chapters of this book, any
one of these three would be a suitable choice for your geospatial web development,
and which one you decide on is largely a matter of personal preference.

GeoDjango
Django (http://djangoproject.org) is a rapid application development
framework for building database-oriented web applications using Python.
GeoDjango is a set of extensions to Django which add geospatial capabilities
to the Django framework.

To	understand	how	GeoDjango	works,	it	is	first	necessary	to	understand	a	little	
about Django itself. Let's start by taking a closer look at Django.

Understanding Django
The Django framework is highly respected, and used to power thousands of web
applications currently deployed across the internet. The major parts of Django
include an object-relational mapper, an automatically-generated admin interface,
a	flexible	URL	mapper,	and	an	HTML	templating	engine.	Putting	these	elements	
together, Django allows you to quickly build sophisticated web applications to
implement a wide variety of database-oriented systems.

Web Frameworks for Python Geospatial Development

[36]

A Django project consists of a number of apps, where each app implements a
standalone set of functionality:

When	creating	a	web	application,	you	define	your	own	app,	and	will	typically	make	
use	of	one	or	more	predefined	apps	that	come	with	Django.	One	of	the	most	important	
predefined	apps	is	the	admin	interface,	which	allows	you	to	administer	your	web	
application,	view	and	edit	data,	and	so	on.	Other	useful	predefined	apps	implement	
persistent sessions, user authentication, site maps, user comments, sending emails,
and serving static data. A large number of user-contributed apps are also available,
providing features such as database migration (south), background task queuing
(celery), image processing (django-imagekit), and much more.

Internally, each app consists of three main parts:

Bonus Chapter

[37]

The models represent the app's data tier. This contains everything related to
the application's data, how it is structured, how to import it, how to access it,
how data is validated, and so on.

The templates make up the app's presentation tier. These describe how information
will be presented to the user.

The views make up the application tier, and hold the application's business logic.
A view is a Python function responsible for accepting incoming requests and sending
out the appropriate response. Views typically make use of the model and template to
produce their output.

Make sure that you don't confuse Django's model-template-view architecture with
the model view controller (MVC) pattern commonly used in software development.
The two are quite distinct, and describe the different tiers in the web application
stack in very different ways. While the model in both Django and MVC represents
the data tier, Django uses the view to hold the application logic, and separates
out the presentation using templates. MVC, on the other hand, allows the view to
directly specify the presentation of the data, and uses a controller to represent the
application's business logic.

The differences between these two design patterns can be summarized as follows:

There is a lot more to Django than can be covered in this brief introduction, but this
is enough to understand how GeoDjango extends the Django framework.

Web Frameworks for Python Geospatial Development

[38]

GeoDjango
GeoDjango builds on Django's capabilities to add comprehensive support for
building geospatial web applications. In particular, it extends the following
parts of the Django system:

•	 The Model
 ° The Django model is extended to support geospatial data types

and spatial queries
 ° As geospatial features are read from the database, the object-

relational mapper automatically converts them into GEOS objects,
providing methods for querying and manipulating these features
in a sophisticated way similar to the interface provided by Shapely

 ° The Model can import data from any OGR supported vector data
source into the GeoDjango database

 ° GeoDjango can use introspection to see which attributes are available
in a given OGR data source, and automatically set up the model to
store and import these attributes

•	 The Template
 ° Django's HTML templating engine is extended to allow for

the display of geospatial data using an embedded OpenLayers
slippy map

•	 The Admin Interface
 ° Django's admin interface is extended to allow the user to create and

edit geospatial data using OpenLayers. The vector data is displayed
on top of a base map using either OpenStreetMap data or a less
detailed WMS source called Vector Map Level 0.

All told, the GeoDjango extension makes Django an excellent choice for developing
geospatial web applications. We will be working with GeoDjango in much more
detail in the remaining chapters of this book.

Bonus Chapter

[39]

Mapfish
Mapfish	(http://mapfish.org) is an extension to the Pyramid web application
framework in much the same way as GeoDjango is an extension to Django. Pyramid
is	the	successor	to	Pylons,	a	popular	and	flexible	web	framework.	Pyramid	brings	
together a number of third-party tools to implement a complete web development
framework, supporting features such as a model view controller architecture, URL
mapping, form handling, sessions, user accounts, and various options for deploying
your web application, as well as internationalization, testing, logging, and debugging
tools. Out of the box, Pyramid supports both a number of HTML templating libraries,
as well as the SQLAlchemy and ZODB object-relational mappers.

Mapfish	builds	on	Pyramid	to	create	a	complete	geospatial	web	application	
framework.	Mapfish	itself	is	broken	into	two	portions:	a	server	portion	and	
a client portion:

Web Frameworks for Python Geospatial Development

[40]

The MapFish server uses PostGIS, SQLAlchemy and Shapely to provide an object-
oriented layer on top of your geospatial data as part of a Pyramid application. The
server also implements a number of RESTful web services, using a custom protocol
known as the MapFish Protocol. These allow the client software to view and make
changes to the underlying geospatial data.

The	Mapfish	client	software	consists	of	a	JavaScript	library	that	provides	the	user	
interface	for	a	Mapfish	application.	The	Mapfish	JavaScript	library	builds	on	
OpenLayers to produce a slippy map, along with the ExtJS and GeoExt libraries
to provide user-interface widgets and common behaviors such as feature selection
and editing, searching, enabling and disabling layers, and so on.

Putting	all	this	together,	Mapfish	allows	developers	to	build	complex	user	interfaces	
for geospatial web applications, along with server side components to implement
features such as geocoding, spatial analysis, and editing geospatial features.

TurboGears
Just as GeoDjango is an extension to the existing Django web framework and
Mapfish	is	an	extension	to	Pyramid,	the	TurboGears web framework (http://
turbogears.org) also has an extension designed to make it easy to implement
your own geospatial web applications. This extension is named tgext.geo, and
comes bundled with TurboGears.

TurboGears is a sophisticated and extremely popular web application framework
built upon Pylons and using a number of standard components including the
SQLAlchemy object-relational mapper, the Genshi templating system, and the
ToscaWidgets user interface library. TurboGears also uses the MVC architecture
to separate the application's data, business logic, and presentation.

The tgext.geo extension to TurboGears makes use of several existing third-party
libraries,	rather	than	trying	to	implement	its	own	functionality.	As	with	Mapfish,	
tgext.geo consists of both client and server components:

Bonus Chapter

[41]

tgext.geo uses the ToscaWidgets tw.openlayers wrapper around the OpenLayers
library to make it easy to embed a slippy map into your TurboGears application.
Alternatively, you can use OpenLayers directly, or use the MapFish client libraries
if you prefer.

On the server side, tgext.geo consists of four parts:

•	 TileCache is used to serve externally-generated map tiles and display
them as a background for your own map data, without wasting bandwidth
or time regenerating the map tiles every time they are needed.

•	 GeoAlchemy (http://geoalchemy.org) provides an object-relational
mapper for geospatial data stored in a PostGIS, MySQL, or SpatialLite
database. As the name suggests, GeoAlchemy is built on top of SQLAlchemy.

Web Frameworks for Python Geospatial Development

[42]

•	 MapFish RESTful web services provide a simple way for the client code
to read and update the geospatial data held in the database.

•	 FeatureServer (http://featureserver.org) provides a more feature-
complete interface to the application's geospatial data. FeatureServer
implements the WFS protocol, as well as providing a RESTful interface
to geospatial data in a number of different formats including JSON, GML,
GeoRSS, KML, and OSM.

The tgext.geo extension to TurboGears makes it possible to quickly build complete
and complex geospatial applications on top of these components using the
TurboGears framework.

Summary
In this chapter, we have surveyed the geospatial web development landscape,
examining the major concepts behind geospatial web application development,
some of the main open protocols used by geospatial web applications, and a
number of Python-based tools for implementing geospatial applications that
run over the internet.

We have seen that:

•	 A web application stack allows you to build complex but highly structured
web applications using off-the-shelf components

•	 A web application framework supports rapid development of web-based
applications,	providing	a	"batteries	included"	or	full	stack	development	
experience

•	 Web services make functionality available to other software components
via an HTTP-based API

•	 A map renderer such as Mapnik can be used to build a web service that
provides map-rendering services to other parts of a web application

•	 Tile caching dramatically improves the performance of a web application
by holding previously-generated map tiles, and only generating new tiles
as they are needed

•	 Web servers provide the interface between your web application and the
outside world

Bonus Chapter

[43]

•	 A user-interface library, often combined with AJAX technology, runs in the
user's web browser and provides a sophisticated user interface not possible
with traditional HTML web pages

•	 The slippy map, popularized by Google Maps, is the ubiquitous interface
for viewing and manipulating geospatial data

•	 Complete geospatial web application stacks, developed using web
application frameworks, can implement sophisticated geospatial features
including data manipulation, searching, and analysis with far less
development	effort	than	would	be	required	using	a	"roll	your	own"	solution

•	 Geospatial web protocols such as WMS, WFS, and TMS allow different
components to communicate in a standard way

•	 Tile caching can be implemented in Python using either TileStache or TileLite
•	 Existing general-purpose user interface libraries such as Twitter Bootstrap,

script.aculo.us, JQuery UI, and YUI can all be used in geospatial applications
to implement the non-spatial portions of the user interface

•	 OpenLayers	and	Leaflet	are	JavaScript	libraries	for	implementing	slippy	
maps, allowing the user to view and edit geospatial data

•	 GeoDjango, MapFish, and tgext.geo are extensions to existing web
application frameworks, providing complete web application development
environments for building complex geospatial web applications

In the next chapter, we will start to build a complete mapping application using
PostGIS, Mapnik, and GeoDjango.

	HERE

